Metamath Proof Explorer


Theorem 2expltfac

Description: The factorial grows faster than two to the power N . (Contributed by Mario Carneiro, 15-Sep-2016)

Ref Expression
Assertion 2expltfac N42N<N!

Proof

Step Hyp Ref Expression
1 oveq2 x=42x=24
2 2exp4 24=16
3 1 2 eqtrdi x=42x=16
4 fveq2 x=4x!=4!
5 fac4 4!=24
6 4 5 eqtrdi x=4x!=24
7 3 6 breq12d x=42x<x!16<24
8 oveq2 x=n2x=2n
9 fveq2 x=nx!=n!
10 8 9 breq12d x=n2x<x!2n<n!
11 oveq2 x=n+12x=2n+1
12 fveq2 x=n+1x!=n+1!
13 11 12 breq12d x=n+12x<x!2n+1<n+1!
14 oveq2 x=N2x=2N
15 fveq2 x=Nx!=N!
16 14 15 breq12d x=N2x<x!2N<N!
17 1nn0 10
18 2nn0 20
19 6nn0 60
20 4nn0 40
21 6lt10 6<10
22 1lt2 1<2
23 17 18 19 20 21 22 decltc 16<24
24 2nn 2
25 24 a1i n42n<n!2
26 4nn 4
27 simpl n42n<n!n4
28 eluznn 4n4n
29 26 27 28 sylancr n42n<n!n
30 29 nnnn0d n42n<n!n0
31 25 30 nnexpcld n42n<n!2n
32 31 nnred n42n<n!2n
33 2re 2
34 33 a1i n42n<n!2
35 32 34 remulcld n42n<n!2n2
36 30 faccld n42n<n!n!
37 36 nnred n42n<n!n!
38 37 34 remulcld n42n<n!n!2
39 29 nnred n42n<n!n
40 1red n42n<n!1
41 39 40 readdcld n42n<n!n+1
42 37 41 remulcld n42n<n!n!n+1
43 2rp 2+
44 43 a1i n42n<n!2+
45 simpr n42n<n!2n<n!
46 32 37 44 45 ltmul1dd n42n<n!2n2<n!2
47 36 nnnn0d n42n<n!n!0
48 47 nn0ge0d n42n<n!0n!
49 df-2 2=1+1
50 29 nnge1d n42n<n!1n
51 40 39 40 50 leadd1dd n42n<n!1+1n+1
52 49 51 eqbrtrid n42n<n!2n+1
53 34 41 37 48 52 lemul2ad n42n<n!n!2n!n+1
54 35 38 42 46 53 ltletrd n42n<n!2n2<n!n+1
55 2cnd n42n<n!2
56 55 30 expp1d n42n<n!2n+1=2n2
57 facp1 n0n+1!=n!n+1
58 30 57 syl n42n<n!n+1!=n!n+1
59 54 56 58 3brtr4d n42n<n!2n+1<n+1!
60 59 ex n42n<n!2n+1<n+1!
61 7 10 13 16 23 60 uzind4i N42N<N!