| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2lgslem2.n |
|
| 2 |
|
oveq1 |
|
| 3 |
2
|
oveq1d |
|
| 4 |
|
fvoveq1 |
|
| 5 |
3 4
|
oveq12d |
|
| 6 |
1 5
|
eqtrid |
|
| 7 |
|
8nn0 |
|
| 8 |
7
|
a1i |
|
| 9 |
|
id |
|
| 10 |
8 9
|
nn0mulcld |
|
| 11 |
10
|
nn0cnd |
|
| 12 |
|
pncan1 |
|
| 13 |
11 12
|
syl |
|
| 14 |
13
|
oveq1d |
|
| 15 |
|
4cn |
|
| 16 |
|
2cn |
|
| 17 |
|
4t2e8 |
|
| 18 |
15 16 17
|
mulcomli |
|
| 19 |
18
|
eqcomi |
|
| 20 |
19
|
a1i |
|
| 21 |
20
|
oveq1d |
|
| 22 |
16
|
a1i |
|
| 23 |
15
|
a1i |
|
| 24 |
|
nn0cn |
|
| 25 |
22 23 24
|
mulassd |
|
| 26 |
21 25
|
eqtrd |
|
| 27 |
26
|
oveq1d |
|
| 28 |
|
4nn0 |
|
| 29 |
28
|
a1i |
|
| 30 |
29 9
|
nn0mulcld |
|
| 31 |
30
|
nn0cnd |
|
| 32 |
|
2ne0 |
|
| 33 |
32
|
a1i |
|
| 34 |
31 22 33
|
divcan3d |
|
| 35 |
14 27 34
|
3eqtrd |
|
| 36 |
|
1cnd |
|
| 37 |
|
4ne0 |
|
| 38 |
15 37
|
pm3.2i |
|
| 39 |
38
|
a1i |
|
| 40 |
|
divdir |
|
| 41 |
11 36 39 40
|
syl3anc |
|
| 42 |
|
8cn |
|
| 43 |
42
|
a1i |
|
| 44 |
|
div23 |
|
| 45 |
43 24 39 44
|
syl3anc |
|
| 46 |
17
|
eqcomi |
|
| 47 |
46
|
oveq1i |
|
| 48 |
16 15 37
|
divcan3i |
|
| 49 |
47 48
|
eqtri |
|
| 50 |
49
|
a1i |
|
| 51 |
50
|
oveq1d |
|
| 52 |
45 51
|
eqtrd |
|
| 53 |
52
|
oveq1d |
|
| 54 |
41 53
|
eqtrd |
|
| 55 |
54
|
fveq2d |
|
| 56 |
|
1lt4 |
|
| 57 |
|
2nn0 |
|
| 58 |
57
|
a1i |
|
| 59 |
58 9
|
nn0mulcld |
|
| 60 |
59
|
nn0zd |
|
| 61 |
|
1nn0 |
|
| 62 |
61
|
a1i |
|
| 63 |
|
4nn |
|
| 64 |
63
|
a1i |
|
| 65 |
|
adddivflid |
|
| 66 |
60 62 64 65
|
syl3anc |
|
| 67 |
56 66
|
mpbii |
|
| 68 |
55 67
|
eqtrd |
|
| 69 |
35 68
|
oveq12d |
|
| 70 |
|
2t2e4 |
|
| 71 |
70
|
eqcomi |
|
| 72 |
71
|
a1i |
|
| 73 |
72
|
oveq1d |
|
| 74 |
22 22 24
|
mulassd |
|
| 75 |
73 74
|
eqtrd |
|
| 76 |
75
|
oveq1d |
|
| 77 |
59
|
nn0cnd |
|
| 78 |
|
2txmxeqx |
|
| 79 |
77 78
|
syl |
|
| 80 |
69 76 79
|
3eqtrd |
|
| 81 |
6 80
|
sylan9eqr |
|