Metamath Proof Explorer


Theorem 2ndimaxp

Description: Image of a cartesian product by 2nd . (Contributed by Thierry Arnoux, 23-Jun-2024)

Ref Expression
Assertion 2ndimaxp A2ndA×B=B

Proof

Step Hyp Ref Expression
1 ima0 2nd=
2 xpeq2 B=A×B=A×
3 xp0 A×=
4 2 3 eqtrdi B=A×B=
5 4 imaeq2d B=2ndA×B=2nd
6 id B=B=
7 1 5 6 3eqtr4a B=2ndA×B=B
8 7 adantl AB=2ndA×B=B
9 xpnz ABA×B
10 fo2nd 2nd:VontoV
11 fofn 2nd:VontoV2ndFnV
12 10 11 mp1i A×B2ndFnV
13 ssv A×BV
14 13 a1i A×BA×BV
15 12 14 fvelimabd A×By2ndA×BpA×B2ndp=y
16 9 15 sylbi ABy2ndA×BpA×B2ndp=y
17 simpr ABpA×B2ndp=y2ndp=y
18 xp2nd pA×B2ndpB
19 18 ad2antlr ABpA×B2ndp=y2ndpB
20 17 19 eqeltrrd ABpA×B2ndp=yyB
21 20 r19.29an ABpA×B2ndp=yyB
22 n0 AxxA
23 22 biimpi AxxA
24 23 ad2antrr AByBxxA
25 opelxpi xAyBxyA×B
26 25 ancoms yBxAxyA×B
27 26 adantll AByBxAxyA×B
28 fveqeq2 p=xy2ndp=y2ndxy=y
29 28 adantl AByBxAp=xy2ndp=y2ndxy=y
30 vex xV
31 vex yV
32 30 31 op2nd 2ndxy=y
33 32 a1i AByBxA2ndxy=y
34 27 29 33 rspcedvd AByBxApA×B2ndp=y
35 24 34 exlimddv AByBpA×B2ndp=y
36 21 35 impbida ABpA×B2ndp=yyB
37 16 36 bitrd ABy2ndA×ByB
38 37 eqrdv AB2ndA×B=B
39 8 38 pm2.61dane A2ndA×B=B