Description: Image of a cartesian product by 2nd . (Contributed by Thierry Arnoux, 23-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | 2ndimaxp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ima0 | |
|
2 | xpeq2 | |
|
3 | xp0 | |
|
4 | 2 3 | eqtrdi | |
5 | 4 | imaeq2d | |
6 | id | |
|
7 | 1 5 6 | 3eqtr4a | |
8 | 7 | adantl | |
9 | xpnz | |
|
10 | fo2nd | |
|
11 | fofn | |
|
12 | 10 11 | mp1i | |
13 | ssv | |
|
14 | 13 | a1i | |
15 | 12 14 | fvelimabd | |
16 | 9 15 | sylbi | |
17 | simpr | |
|
18 | xp2nd | |
|
19 | 18 | ad2antlr | |
20 | 17 19 | eqeltrrd | |
21 | 20 | r19.29an | |
22 | n0 | |
|
23 | 22 | biimpi | |
24 | 23 | ad2antrr | |
25 | opelxpi | |
|
26 | 25 | ancoms | |
27 | 26 | adantll | |
28 | fveqeq2 | |
|
29 | 28 | adantl | |
30 | vex | |
|
31 | vex | |
|
32 | 30 31 | op2nd | |
33 | 32 | a1i | |
34 | 27 29 33 | rspcedvd | |
35 | 24 34 | exlimddv | |
36 | 21 35 | impbida | |
37 | 16 36 | bitrd | |
38 | 37 | eqrdv | |
39 | 8 38 | pm2.61dane | |