Description: Lemma for 2sqreultb . (Contributed by AV, 10-Jun-2023) The prime needs not be odd, as observed by WL. (Revised by AV, 18-Jun-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | 2sqreultblem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sqreultlem | |
|
2 | 1 | ex | |
3 | 2reu2rex | |
|
4 | elsni | |
|
5 | eqeq2 | |
|
6 | 5 | anbi2d | |
7 | 6 | adantl | |
8 | 2sq2 | |
|
9 | breq12 | |
|
10 | 1re | |
|
11 | 10 | ltnri | |
12 | 11 | pm2.21i | |
13 | 9 12 | syl6bi | |
14 | 8 13 | syl6bi | |
15 | 14 | impcomd | |
16 | 15 | adantr | |
17 | 7 16 | sylbid | |
18 | 17 | ex | |
19 | 18 | com23 | |
20 | 19 | rexlimivv | |
21 | 3 4 20 | syl2imc | |
22 | 21 | a1d | |
23 | eldif | |
|
24 | eldifsnneq | |
|
25 | nn0ssz | |
|
26 | id | |
|
27 | 26 | eqcomd | |
28 | 27 | adantl | |
29 | 28 | reximi | |
30 | 29 | reximi | |
31 | ssrexv | |
|
32 | 25 31 | ax-mp | |
33 | 32 | reximi | |
34 | 3 30 33 | 3syl | |
35 | ssrexv | |
|
36 | 25 34 35 | mpsyl | |
37 | 36 | adantl | |
38 | eldifi | |
|
39 | 38 | adantr | |
40 | 2sqb | |
|
41 | 39 40 | syl | |
42 | 37 41 | mpbid | |
43 | 42 | ord | |
44 | 43 | ex | |
45 | 24 44 | mpid | |
46 | 23 45 | sylbir | |
47 | 46 | expcom | |
48 | 22 47 | pm2.61i | |
49 | 2 48 | impbid | |