Metamath Proof Explorer


Theorem 2sqreultblem

Description: Lemma for 2sqreultb . (Contributed by AV, 10-Jun-2023) The prime needs not be odd, as observed by WL. (Revised by AV, 18-Jun-2023)

Ref Expression
Assertion 2sqreultblem PPmod4=1∃!a0∃!b0a<ba2+b2=P

Proof

Step Hyp Ref Expression
1 2sqreultlem PPmod4=1∃!a0∃!b0a<ba2+b2=P
2 1 ex PPmod4=1∃!a0∃!b0a<ba2+b2=P
3 2reu2rex ∃!a0∃!b0a<ba2+b2=Pa0b0a<ba2+b2=P
4 elsni P2P=2
5 eqeq2 P=2a2+b2=Pa2+b2=2
6 5 anbi2d P=2a<ba2+b2=Pa<ba2+b2=2
7 6 adantl a0b0P=2a<ba2+b2=Pa<ba2+b2=2
8 2sq2 a0b0a2+b2=2a=1b=1
9 breq12 a=1b=1a<b1<1
10 1re 1
11 10 ltnri ¬1<1
12 11 pm2.21i 1<1Pmod4=1
13 9 12 syl6bi a=1b=1a<bPmod4=1
14 8 13 syl6bi a0b0a2+b2=2a<bPmod4=1
15 14 impcomd a0b0a<ba2+b2=2Pmod4=1
16 15 adantr a0b0P=2a<ba2+b2=2Pmod4=1
17 7 16 sylbid a0b0P=2a<ba2+b2=PPmod4=1
18 17 ex a0b0P=2a<ba2+b2=PPmod4=1
19 18 com23 a0b0a<ba2+b2=PP=2Pmod4=1
20 19 rexlimivv a0b0a<ba2+b2=PP=2Pmod4=1
21 3 4 20 syl2imc P2∃!a0∃!b0a<ba2+b2=PPmod4=1
22 21 a1d P2P∃!a0∃!b0a<ba2+b2=PPmod4=1
23 eldif P2P¬P2
24 eldifsnneq P2¬P=2
25 nn0ssz 0
26 id a2+b2=Pa2+b2=P
27 26 eqcomd a2+b2=PP=a2+b2
28 27 adantl a<ba2+b2=PP=a2+b2
29 28 reximi b0a<ba2+b2=Pb0P=a2+b2
30 29 reximi a0b0a<ba2+b2=Pa0b0P=a2+b2
31 ssrexv 0b0P=a2+b2bP=a2+b2
32 25 31 ax-mp b0P=a2+b2bP=a2+b2
33 32 reximi a0b0P=a2+b2a0bP=a2+b2
34 3 30 33 3syl ∃!a0∃!b0a<ba2+b2=Pa0bP=a2+b2
35 ssrexv 0a0bP=a2+b2abP=a2+b2
36 25 34 35 mpsyl ∃!a0∃!b0a<ba2+b2=PabP=a2+b2
37 36 adantl P2∃!a0∃!b0a<ba2+b2=PabP=a2+b2
38 eldifi P2P
39 38 adantr P2∃!a0∃!b0a<ba2+b2=PP
40 2sqb PabP=a2+b2P=2Pmod4=1
41 39 40 syl P2∃!a0∃!b0a<ba2+b2=PabP=a2+b2P=2Pmod4=1
42 37 41 mpbid P2∃!a0∃!b0a<ba2+b2=PP=2Pmod4=1
43 42 ord P2∃!a0∃!b0a<ba2+b2=P¬P=2Pmod4=1
44 43 ex P2∃!a0∃!b0a<ba2+b2=P¬P=2Pmod4=1
45 24 44 mpid P2∃!a0∃!b0a<ba2+b2=PPmod4=1
46 23 45 sylbir P¬P2∃!a0∃!b0a<ba2+b2=PPmod4=1
47 46 expcom ¬P2P∃!a0∃!b0a<ba2+b2=PPmod4=1
48 22 47 pm2.61i P∃!a0∃!b0a<ba2+b2=PPmod4=1
49 2 48 impbid PPmod4=1∃!a0∃!b0a<ba2+b2=P