Description: Lemma 5 for 2wlkd . (Contributed by AV, 14-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2wlkd.p | |
|
2wlkd.f | |
||
2wlkd.s | |
||
2wlkd.n | |
||
Assertion | 2wlkdlem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2wlkd.p | |
|
2 | 2wlkd.f | |
|
3 | 2wlkd.s | |
|
4 | 2wlkd.n | |
|
5 | 1 2 3 | 2wlkdlem3 | |
6 | simp1 | |
|
7 | simp2 | |
|
8 | 6 7 | neeq12d | |
9 | simp3 | |
|
10 | 7 9 | neeq12d | |
11 | 8 10 | anbi12d | |
12 | 11 | bicomd | |
13 | 5 12 | syl | |
14 | 4 13 | mpbid | |
15 | 1 2 | 2wlkdlem2 | |
16 | 15 | raleqi | |
17 | c0ex | |
|
18 | 1ex | |
|
19 | fveq2 | |
|
20 | fv0p1e1 | |
|
21 | 19 20 | neeq12d | |
22 | fveq2 | |
|
23 | oveq1 | |
|
24 | 1p1e2 | |
|
25 | 23 24 | eqtrdi | |
26 | 25 | fveq2d | |
27 | 22 26 | neeq12d | |
28 | 17 18 21 27 | ralpr | |
29 | 16 28 | bitri | |
30 | 14 29 | sylibr | |