Metamath Proof Explorer


Theorem 2wlkdlem5

Description: Lemma 5 for 2wlkd . (Contributed by AV, 14-Feb-2021)

Ref Expression
Hypotheses 2wlkd.p P=⟨“ABC”⟩
2wlkd.f F=⟨“JK”⟩
2wlkd.s φAVBVCV
2wlkd.n φABBC
Assertion 2wlkdlem5 φk0..^FPkPk+1

Proof

Step Hyp Ref Expression
1 2wlkd.p P=⟨“ABC”⟩
2 2wlkd.f F=⟨“JK”⟩
3 2wlkd.s φAVBVCV
4 2wlkd.n φABBC
5 1 2 3 2wlkdlem3 φP0=AP1=BP2=C
6 simp1 P0=AP1=BP2=CP0=A
7 simp2 P0=AP1=BP2=CP1=B
8 6 7 neeq12d P0=AP1=BP2=CP0P1AB
9 simp3 P0=AP1=BP2=CP2=C
10 7 9 neeq12d P0=AP1=BP2=CP1P2BC
11 8 10 anbi12d P0=AP1=BP2=CP0P1P1P2ABBC
12 11 bicomd P0=AP1=BP2=CABBCP0P1P1P2
13 5 12 syl φABBCP0P1P1P2
14 4 13 mpbid φP0P1P1P2
15 1 2 2wlkdlem2 0..^F=01
16 15 raleqi k0..^FPkPk+1k01PkPk+1
17 c0ex 0V
18 1ex 1V
19 fveq2 k=0Pk=P0
20 fv0p1e1 k=0Pk+1=P1
21 19 20 neeq12d k=0PkPk+1P0P1
22 fveq2 k=1Pk=P1
23 oveq1 k=1k+1=1+1
24 1p1e2 1+1=2
25 23 24 eqtrdi k=1k+1=2
26 25 fveq2d k=1Pk+1=P2
27 22 26 neeq12d k=1PkPk+1P1P2
28 17 18 21 27 ralpr k01PkPk+1P0P1P1P2
29 16 28 bitri k0..^FPkPk+1P0P1P1P2
30 14 29 sylibr φk0..^FPkPk+1