Metamath Proof Explorer


Theorem 3lexlogpow5ineq3

Description: Combined inequality chain for a specific power of the binary logarithm, proposed by Mario Carneiro. (Contributed by metakunt, 22-May-2024)

Ref Expression
Hypotheses 3lexlogpow5ineq3.1 φ X
3lexlogpow5ineq3.2 φ 3 X
Assertion 3lexlogpow5ineq3 φ 7 < log 2 X 5

Proof

Step Hyp Ref Expression
1 3lexlogpow5ineq3.1 φ X
2 3lexlogpow5ineq3.2 φ 3 X
3 7re 7
4 3 a1i φ 7
5 9re 9
6 5 a1i φ 9
7 2re 2
8 7 a1i φ 2
9 2pos 0 < 2
10 9 a1i φ 0 < 2
11 0red φ 0
12 3re 3
13 12 a1i φ 3
14 3pos 0 < 3
15 14 a1i φ 0 < 3
16 11 13 1 15 2 ltletrd φ 0 < X
17 1red φ 1
18 1lt2 1 < 2
19 18 a1i φ 1 < 2
20 17 19 ltned φ 1 2
21 20 necomd φ 2 1
22 8 10 1 16 21 relogbcld φ log 2 X
23 5nn0 5 0
24 23 a1i φ 5 0
25 22 24 reexpcld φ log 2 X 5
26 7lt9 7 < 9
27 26 a1i φ 7 < 9
28 1 2 3lexlogpow5ineq4 φ 9 < log 2 X 5
29 4 6 25 27 28 lttrd φ 7 < log 2 X 5