Metamath Proof Explorer


Theorem 3lexlogpow5ineq3

Description: Combined inequality chain for a specific power of the binary logarithm, proposed by Mario Carneiro. (Contributed by metakunt, 22-May-2024)

Ref Expression
Hypotheses 3lexlogpow5ineq3.1 φX
3lexlogpow5ineq3.2 φ3X
Assertion 3lexlogpow5ineq3 φ7<log2X5

Proof

Step Hyp Ref Expression
1 3lexlogpow5ineq3.1 φX
2 3lexlogpow5ineq3.2 φ3X
3 7re 7
4 3 a1i φ7
5 9re 9
6 5 a1i φ9
7 2re 2
8 7 a1i φ2
9 2pos 0<2
10 9 a1i φ0<2
11 0red φ0
12 3re 3
13 12 a1i φ3
14 3pos 0<3
15 14 a1i φ0<3
16 11 13 1 15 2 ltletrd φ0<X
17 1red φ1
18 1lt2 1<2
19 18 a1i φ1<2
20 17 19 ltned φ12
21 20 necomd φ21
22 8 10 1 16 21 relogbcld φlog2X
23 5nn0 50
24 23 a1i φ50
25 22 24 reexpcld φlog2X5
26 7lt9 7<9
27 26 a1i φ7<9
28 1 2 3lexlogpow5ineq4 φ9<log2X5
29 4 6 25 27 28 lttrd φ7<log2X5