Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for metakunt
Logarithm inequalities
3lexlogpow5ineq3
Metamath Proof Explorer
Description: Combined inequality chain for a specific power of the binary logarithm,
proposed by Mario Carneiro. (Contributed by metakunt , 22-May-2024)
Ref
Expression
Hypotheses
3lexlogpow5ineq3.1
⊢ φ → X ∈ ℝ
3lexlogpow5ineq3.2
⊢ φ → 3 ≤ X
Assertion
3lexlogpow5ineq3
⊢ φ → 7 < log 2 X 5
Proof
Step
Hyp
Ref
Expression
1
3lexlogpow5ineq3.1
⊢ φ → X ∈ ℝ
2
3lexlogpow5ineq3.2
⊢ φ → 3 ≤ X
3
7re
⊢ 7 ∈ ℝ
4
3
a1i
⊢ φ → 7 ∈ ℝ
5
9re
⊢ 9 ∈ ℝ
6
5
a1i
⊢ φ → 9 ∈ ℝ
7
2re
⊢ 2 ∈ ℝ
8
7
a1i
⊢ φ → 2 ∈ ℝ
9
2pos
⊢ 0 < 2
10
9
a1i
⊢ φ → 0 < 2
11
0red
⊢ φ → 0 ∈ ℝ
12
3re
⊢ 3 ∈ ℝ
13
12
a1i
⊢ φ → 3 ∈ ℝ
14
3pos
⊢ 0 < 3
15
14
a1i
⊢ φ → 0 < 3
16
11 13 1 15 2
ltletrd
⊢ φ → 0 < X
17
1red
⊢ φ → 1 ∈ ℝ
18
1lt2
⊢ 1 < 2
19
18
a1i
⊢ φ → 1 < 2
20
17 19
ltned
⊢ φ → 1 ≠ 2
21
20
necomd
⊢ φ → 2 ≠ 1
22
8 10 1 16 21
relogbcld
⊢ φ → log 2 X ∈ ℝ
23
5nn0
⊢ 5 ∈ ℕ 0
24
23
a1i
⊢ φ → 5 ∈ ℕ 0
25
22 24
reexpcld
⊢ φ → log 2 X 5 ∈ ℝ
26
7lt9
⊢ 7 < 9
27
26
a1i
⊢ φ → 7 < 9
28
1 2
3lexlogpow5ineq4
⊢ φ → 9 < log 2 X 5
29
4 6 25 27 28
lttrd
⊢ φ → 7 < log 2 X 5