Description: Lemma 5 for 3wlkd . (Contributed by Alexander van der Vekens, 11-Nov-2017) (Revised by AV, 7-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 3wlkd.p | |
|
3wlkd.f | |
||
3wlkd.s | |
||
3wlkd.n | |
||
Assertion | 3wlkdlem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3wlkd.p | |
|
2 | 3wlkd.f | |
|
3 | 3wlkd.s | |
|
4 | 3wlkd.n | |
|
5 | simpl | |
|
6 | simpl | |
|
7 | id | |
|
8 | 5 6 7 | 3anim123i | |
9 | 4 8 | syl | |
10 | 1 2 3 | 3wlkdlem3 | |
11 | simpl | |
|
12 | simpr | |
|
13 | 11 12 | neeq12d | |
14 | 13 | adantr | |
15 | 12 | adantr | |
16 | simpl | |
|
17 | 16 | adantl | |
18 | 15 17 | neeq12d | |
19 | simpr | |
|
20 | 16 19 | neeq12d | |
21 | 20 | adantl | |
22 | 14 18 21 | 3anbi123d | |
23 | 10 22 | syl | |
24 | 9 23 | mpbird | |
25 | 1 2 | 3wlkdlem2 | |
26 | 25 | raleqi | |
27 | c0ex | |
|
28 | 1ex | |
|
29 | 2ex | |
|
30 | fveq2 | |
|
31 | fv0p1e1 | |
|
32 | 30 31 | neeq12d | |
33 | fveq2 | |
|
34 | oveq1 | |
|
35 | 1p1e2 | |
|
36 | 34 35 | eqtrdi | |
37 | 36 | fveq2d | |
38 | 33 37 | neeq12d | |
39 | fveq2 | |
|
40 | oveq1 | |
|
41 | 2p1e3 | |
|
42 | 40 41 | eqtrdi | |
43 | 42 | fveq2d | |
44 | 39 43 | neeq12d | |
45 | 27 28 29 32 38 44 | raltp | |
46 | 26 45 | bitri | |
47 | 24 46 | sylibr | |