Metamath Proof Explorer


Theorem 3wlkdlem5

Description: Lemma 5 for 3wlkd . (Contributed by Alexander van der Vekens, 11-Nov-2017) (Revised by AV, 7-Feb-2021)

Ref Expression
Hypotheses 3wlkd.p P=⟨“ABCD”⟩
3wlkd.f F=⟨“JKL”⟩
3wlkd.s φAVBVCVDV
3wlkd.n φABACBCBDCD
Assertion 3wlkdlem5 φk0..^FPkPk+1

Proof

Step Hyp Ref Expression
1 3wlkd.p P=⟨“ABCD”⟩
2 3wlkd.f F=⟨“JKL”⟩
3 3wlkd.s φAVBVCVDV
4 3wlkd.n φABACBCBDCD
5 simpl ABACAB
6 simpl BCBDBC
7 id CDCD
8 5 6 7 3anim123i ABACBCBDCDABBCCD
9 4 8 syl φABBCCD
10 1 2 3 3wlkdlem3 φP0=AP1=BP2=CP3=D
11 simpl P0=AP1=BP0=A
12 simpr P0=AP1=BP1=B
13 11 12 neeq12d P0=AP1=BP0P1AB
14 13 adantr P0=AP1=BP2=CP3=DP0P1AB
15 12 adantr P0=AP1=BP2=CP3=DP1=B
16 simpl P2=CP3=DP2=C
17 16 adantl P0=AP1=BP2=CP3=DP2=C
18 15 17 neeq12d P0=AP1=BP2=CP3=DP1P2BC
19 simpr P2=CP3=DP3=D
20 16 19 neeq12d P2=CP3=DP2P3CD
21 20 adantl P0=AP1=BP2=CP3=DP2P3CD
22 14 18 21 3anbi123d P0=AP1=BP2=CP3=DP0P1P1P2P2P3ABBCCD
23 10 22 syl φP0P1P1P2P2P3ABBCCD
24 9 23 mpbird φP0P1P1P2P2P3
25 1 2 3wlkdlem2 0..^F=012
26 25 raleqi k0..^FPkPk+1k012PkPk+1
27 c0ex 0V
28 1ex 1V
29 2ex 2V
30 fveq2 k=0Pk=P0
31 fv0p1e1 k=0Pk+1=P1
32 30 31 neeq12d k=0PkPk+1P0P1
33 fveq2 k=1Pk=P1
34 oveq1 k=1k+1=1+1
35 1p1e2 1+1=2
36 34 35 eqtrdi k=1k+1=2
37 36 fveq2d k=1Pk+1=P2
38 33 37 neeq12d k=1PkPk+1P1P2
39 fveq2 k=2Pk=P2
40 oveq1 k=2k+1=2+1
41 2p1e3 2+1=3
42 40 41 eqtrdi k=2k+1=3
43 42 fveq2d k=2Pk+1=P3
44 39 43 neeq12d k=2PkPk+1P2P3
45 27 28 29 32 38 44 raltp k012PkPk+1P0P1P1P2P2P3
46 26 45 bitri k0..^FPkPk+1P0P1P1P2P2P3
47 24 46 sylibr φk0..^FPkPk+1