Metamath Proof Explorer


Theorem 4atex2-0aOLDN

Description: Same as 4atex2 except that S is zero. (Contributed by NM, 27-May-2013) (New usage is discouraged.)

Ref Expression
Hypotheses 4that.l ˙=K
4that.j ˙=joinK
4that.a A=AtomsK
4that.h H=LHypK
Assertion 4atex2-0aOLDN KHLWHPA¬P˙WQA¬Q˙WS=0.KPQTA¬T˙WrA¬r˙WP˙r=Q˙rzA¬z˙WS˙z=T˙z

Proof

Step Hyp Ref Expression
1 4that.l ˙=K
2 4that.j ˙=joinK
3 4that.a A=AtomsK
4 4that.h H=LHypK
5 simp32l KHLWHPA¬P˙WQA¬Q˙WS=0.KPQTA¬T˙WrA¬r˙WP˙r=Q˙rTA
6 simp32r KHLWHPA¬P˙WQA¬Q˙WS=0.KPQTA¬T˙WrA¬r˙WP˙r=Q˙r¬T˙W
7 simp1l KHLWHPA¬P˙WQA¬Q˙WS=0.KPQTA¬T˙WrA¬r˙WP˙r=Q˙rKHL
8 hlol KHLKOL
9 7 8 syl KHLWHPA¬P˙WQA¬Q˙WS=0.KPQTA¬T˙WrA¬r˙WP˙r=Q˙rKOL
10 eqid BaseK=BaseK
11 10 3 atbase TATBaseK
12 5 11 syl KHLWHPA¬P˙WQA¬Q˙WS=0.KPQTA¬T˙WrA¬r˙WP˙r=Q˙rTBaseK
13 eqid 0.K=0.K
14 10 2 13 olj02 KOLTBaseK0.K˙T=T
15 9 12 14 syl2anc KHLWHPA¬P˙WQA¬Q˙WS=0.KPQTA¬T˙WrA¬r˙WP˙r=Q˙r0.K˙T=T
16 simp23 KHLWHPA¬P˙WQA¬Q˙WS=0.KPQTA¬T˙WrA¬r˙WP˙r=Q˙rS=0.K
17 16 oveq1d KHLWHPA¬P˙WQA¬Q˙WS=0.KPQTA¬T˙WrA¬r˙WP˙r=Q˙rS˙T=0.K˙T
18 2 3 hlatjidm KHLTAT˙T=T
19 7 5 18 syl2anc KHLWHPA¬P˙WQA¬Q˙WS=0.KPQTA¬T˙WrA¬r˙WP˙r=Q˙rT˙T=T
20 15 17 19 3eqtr4d KHLWHPA¬P˙WQA¬Q˙WS=0.KPQTA¬T˙WrA¬r˙WP˙r=Q˙rS˙T=T˙T
21 breq1 z=Tz˙WT˙W
22 21 notbid z=T¬z˙W¬T˙W
23 oveq2 z=TS˙z=S˙T
24 oveq2 z=TT˙z=T˙T
25 23 24 eqeq12d z=TS˙z=T˙zS˙T=T˙T
26 22 25 anbi12d z=T¬z˙WS˙z=T˙z¬T˙WS˙T=T˙T
27 26 rspcev TA¬T˙WS˙T=T˙TzA¬z˙WS˙z=T˙z
28 5 6 20 27 syl12anc KHLWHPA¬P˙WQA¬Q˙WS=0.KPQTA¬T˙WrA¬r˙WP˙r=Q˙rzA¬z˙WS˙z=T˙z