Metamath Proof Explorer


Theorem 4bc2eq6

Description: The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017)

Ref Expression
Assertion 4bc2eq6 (42)=6

Proof

Step Hyp Ref Expression
1 0z 0
2 4z 4
3 2z 2
4 1 2 3 3pm3.2i 042
5 0le2 02
6 2re 2
7 4re 4
8 2lt4 2<4
9 6 7 8 ltleii 24
10 5 9 pm3.2i 0224
11 elfz4 0420224204
12 4 10 11 mp2an 204
13 bcval2 204(42)=4!42!2!
14 12 13 ax-mp (42)=4!42!2!
15 3nn0 30
16 facp1 303+1!=3!3+1
17 15 16 ax-mp 3+1!=3!3+1
18 df-4 4=3+1
19 18 fveq2i 4!=3+1!
20 18 oveq2i 3!4=3!3+1
21 17 19 20 3eqtr4i 4!=3!4
22 4cn 4
23 2cn 2
24 2p2e4 2+2=4
25 22 23 23 24 subaddrii 42=2
26 25 fveq2i 42!=2!
27 fac2 2!=2
28 26 27 eqtri 42!=2
29 28 27 oveq12i 42!2!=22
30 2t2e4 22=4
31 29 30 eqtri 42!2!=4
32 21 31 oveq12i 4!42!2!=3!44
33 faccl 303!
34 15 33 ax-mp 3!
35 34 nncni 3!
36 4ne0 40
37 35 22 36 divcan4i 3!44=3!
38 fac3 3!=6
39 37 38 eqtri 3!44=6
40 32 39 eqtri 4!42!2!=6
41 14 40 eqtri (42)=6