Metamath Proof Explorer


Theorem aacjcl

Description: The conjugate of an algebraic number is algebraic. (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Assertion aacjcl A𝔸A𝔸

Proof

Step Hyp Ref Expression
1 cjcl AA
2 1 adantr AfPoly0𝑝fA=0A
3 fveq2 fA=0fA=0
4 cj0 0=0
5 3 4 eqtrdi fA=0fA=0
6 difss Poly0𝑝Poly
7 zssre
8 ax-resscn
9 plyss PolyPoly
10 7 8 9 mp2an PolyPoly
11 6 10 sstri Poly0𝑝Poly
12 11 sseli fPoly0𝑝fPoly
13 id AA
14 plyrecj fPolyAfA=fA
15 12 13 14 syl2anr AfPoly0𝑝fA=fA
16 15 eqeq1d AfPoly0𝑝fA=0fA=0
17 5 16 imbitrid AfPoly0𝑝fA=0fA=0
18 17 reximdva AfPoly0𝑝fA=0fPoly0𝑝fA=0
19 18 imp AfPoly0𝑝fA=0fPoly0𝑝fA=0
20 2 19 jca AfPoly0𝑝fA=0AfPoly0𝑝fA=0
21 elaa A𝔸AfPoly0𝑝fA=0
22 elaa A𝔸AfPoly0𝑝fA=0
23 20 21 22 3imtr4i A𝔸A𝔸