Database
BASIC REAL AND COMPLEX FUNCTIONS
Polynomials
Algebraic numbers
aannenlem1
Next ⟩
aannenlem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
aannenlem1
Description:
Lemma for
aannen
.
(Contributed by
Stefan O'Rear
, 16-Nov-2014)
Ref
Expression
Hypothesis
aannenlem.a
⊢
H
=
a
∈
ℕ
0
⟼
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
Assertion
aannenlem1
⊢
A
∈
ℕ
0
→
H
A
∈
Fin
Proof
Step
Hyp
Ref
Expression
1
aannenlem.a
⊢
H
=
a
∈
ℕ
0
⟼
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
2
breq2
⊢
a
=
A
→
deg
d
≤
a
↔
deg
d
≤
A
3
breq2
⊢
a
=
A
→
coeff
d
e
≤
a
↔
coeff
d
e
≤
A
4
3
ralbidv
⊢
a
=
A
→
∀
e
∈
ℕ
0
coeff
d
e
≤
a
↔
∀
e
∈
ℕ
0
coeff
d
e
≤
A
5
2
4
3anbi23d
⊢
a
=
A
→
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
↔
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
6
5
rabbidv
⊢
a
=
A
→
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
=
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
7
6
rexeqdv
⊢
a
=
A
→
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
↔
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
c
b
=
0
8
7
rabbidv
⊢
a
=
A
→
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
a
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
a
c
b
=
0
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
c
b
=
0
9
cnex
⊢
ℂ
∈
V
10
9
rabex
⊢
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
c
b
=
0
∈
V
11
8
1
10
fvmpt
⊢
A
∈
ℕ
0
→
H
A
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
c
b
=
0
12
iunrab
⊢
⋃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
b
∈
ℂ
|
c
b
=
0
=
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
c
b
=
0
13
fzfi
⊢
−
A
…
A
∈
Fin
14
fzfi
⊢
0
…
A
∈
Fin
15
mapfi
⊢
−
A
…
A
∈
Fin
∧
0
…
A
∈
Fin
→
−
A
…
A
0
…
A
∈
Fin
16
13
14
15
mp2an
⊢
−
A
…
A
0
…
A
∈
Fin
17
16
a1i
⊢
A
∈
ℕ
0
→
−
A
…
A
0
…
A
∈
Fin
18
ovex
⊢
−
A
…
A
0
…
A
∈
V
19
neeq1
⊢
d
=
a
→
d
≠
0
𝑝
↔
a
≠
0
𝑝
20
fveq2
⊢
d
=
a
→
deg
d
=
deg
a
21
20
breq1d
⊢
d
=
a
→
deg
d
≤
A
↔
deg
a
≤
A
22
fveq2
⊢
d
=
a
→
coeff
d
=
coeff
a
23
22
fveq1d
⊢
d
=
a
→
coeff
d
e
=
coeff
a
e
24
23
fveq2d
⊢
d
=
a
→
coeff
d
e
=
coeff
a
e
25
24
breq1d
⊢
d
=
a
→
coeff
d
e
≤
A
↔
coeff
a
e
≤
A
26
25
ralbidv
⊢
d
=
a
→
∀
e
∈
ℕ
0
coeff
d
e
≤
A
↔
∀
e
∈
ℕ
0
coeff
a
e
≤
A
27
19
21
26
3anbi123d
⊢
d
=
a
→
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
↔
a
≠
0
𝑝
∧
deg
a
≤
A
∧
∀
e
∈
ℕ
0
coeff
a
e
≤
A
28
27
elrab
⊢
a
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
↔
a
∈
Poly
ℤ
∧
a
≠
0
𝑝
∧
deg
a
≤
A
∧
∀
e
∈
ℕ
0
coeff
a
e
≤
A
29
simp3
⊢
a
≠
0
𝑝
∧
deg
a
≤
A
∧
∀
e
∈
ℕ
0
coeff
a
e
≤
A
→
∀
e
∈
ℕ
0
coeff
a
e
≤
A
30
29
anim2i
⊢
a
∈
Poly
ℤ
∧
a
≠
0
𝑝
∧
deg
a
≤
A
∧
∀
e
∈
ℕ
0
coeff
a
e
≤
A
→
a
∈
Poly
ℤ
∧
∀
e
∈
ℕ
0
coeff
a
e
≤
A
31
28
30
sylbi
⊢
a
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
→
a
∈
Poly
ℤ
∧
∀
e
∈
ℕ
0
coeff
a
e
≤
A
32
0z
⊢
0
∈
ℤ
33
eqid
⊢
coeff
a
=
coeff
a
34
33
coef2
⊢
a
∈
Poly
ℤ
∧
0
∈
ℤ
→
coeff
a
:
ℕ
0
⟶
ℤ
35
32
34
mpan2
⊢
a
∈
Poly
ℤ
→
coeff
a
:
ℕ
0
⟶
ℤ
36
35
ad2antrl
⊢
A
∈
ℕ
0
∧
a
∈
Poly
ℤ
∧
∀
e
∈
ℕ
0
coeff
a
e
≤
A
→
coeff
a
:
ℕ
0
⟶
ℤ
37
36
ffnd
⊢
A
∈
ℕ
0
∧
a
∈
Poly
ℤ
∧
∀
e
∈
ℕ
0
coeff
a
e
≤
A
→
coeff
a
Fn
ℕ
0
38
35
adantl
⊢
A
∈
ℕ
0
∧
a
∈
Poly
ℤ
→
coeff
a
:
ℕ
0
⟶
ℤ
39
38
ffvelcdmda
⊢
A
∈
ℕ
0
∧
a
∈
Poly
ℤ
∧
e
∈
ℕ
0
→
coeff
a
e
∈
ℤ
40
39
zred
⊢
A
∈
ℕ
0
∧
a
∈
Poly
ℤ
∧
e
∈
ℕ
0
→
coeff
a
e
∈
ℝ
41
nn0re
⊢
A
∈
ℕ
0
→
A
∈
ℝ
42
41
ad2antrr
⊢
A
∈
ℕ
0
∧
a
∈
Poly
ℤ
∧
e
∈
ℕ
0
→
A
∈
ℝ
43
40
42
absled
⊢
A
∈
ℕ
0
∧
a
∈
Poly
ℤ
∧
e
∈
ℕ
0
→
coeff
a
e
≤
A
↔
−
A
≤
coeff
a
e
∧
coeff
a
e
≤
A
44
nn0z
⊢
A
∈
ℕ
0
→
A
∈
ℤ
45
44
ad2antrr
⊢
A
∈
ℕ
0
∧
a
∈
Poly
ℤ
∧
e
∈
ℕ
0
→
A
∈
ℤ
46
45
znegcld
⊢
A
∈
ℕ
0
∧
a
∈
Poly
ℤ
∧
e
∈
ℕ
0
→
−
A
∈
ℤ
47
elfz
⊢
coeff
a
e
∈
ℤ
∧
−
A
∈
ℤ
∧
A
∈
ℤ
→
coeff
a
e
∈
−
A
…
A
↔
−
A
≤
coeff
a
e
∧
coeff
a
e
≤
A
48
39
46
45
47
syl3anc
⊢
A
∈
ℕ
0
∧
a
∈
Poly
ℤ
∧
e
∈
ℕ
0
→
coeff
a
e
∈
−
A
…
A
↔
−
A
≤
coeff
a
e
∧
coeff
a
e
≤
A
49
43
48
bitr4d
⊢
A
∈
ℕ
0
∧
a
∈
Poly
ℤ
∧
e
∈
ℕ
0
→
coeff
a
e
≤
A
↔
coeff
a
e
∈
−
A
…
A
50
49
biimpd
⊢
A
∈
ℕ
0
∧
a
∈
Poly
ℤ
∧
e
∈
ℕ
0
→
coeff
a
e
≤
A
→
coeff
a
e
∈
−
A
…
A
51
50
ralimdva
⊢
A
∈
ℕ
0
∧
a
∈
Poly
ℤ
→
∀
e
∈
ℕ
0
coeff
a
e
≤
A
→
∀
e
∈
ℕ
0
coeff
a
e
∈
−
A
…
A
52
51
impr
⊢
A
∈
ℕ
0
∧
a
∈
Poly
ℤ
∧
∀
e
∈
ℕ
0
coeff
a
e
≤
A
→
∀
e
∈
ℕ
0
coeff
a
e
∈
−
A
…
A
53
fnfvrnss
⊢
coeff
a
Fn
ℕ
0
∧
∀
e
∈
ℕ
0
coeff
a
e
∈
−
A
…
A
→
ran
coeff
a
⊆
−
A
…
A
54
37
52
53
syl2anc
⊢
A
∈
ℕ
0
∧
a
∈
Poly
ℤ
∧
∀
e
∈
ℕ
0
coeff
a
e
≤
A
→
ran
coeff
a
⊆
−
A
…
A
55
df-f
⊢
coeff
a
:
ℕ
0
⟶
−
A
…
A
↔
coeff
a
Fn
ℕ
0
∧
ran
coeff
a
⊆
−
A
…
A
56
37
54
55
sylanbrc
⊢
A
∈
ℕ
0
∧
a
∈
Poly
ℤ
∧
∀
e
∈
ℕ
0
coeff
a
e
≤
A
→
coeff
a
:
ℕ
0
⟶
−
A
…
A
57
fz0ssnn0
⊢
0
…
A
⊆
ℕ
0
58
fssres
⊢
coeff
a
:
ℕ
0
⟶
−
A
…
A
∧
0
…
A
⊆
ℕ
0
→
coeff
a
↾
0
…
A
:
0
…
A
⟶
−
A
…
A
59
56
57
58
sylancl
⊢
A
∈
ℕ
0
∧
a
∈
Poly
ℤ
∧
∀
e
∈
ℕ
0
coeff
a
e
≤
A
→
coeff
a
↾
0
…
A
:
0
…
A
⟶
−
A
…
A
60
ovex
⊢
−
A
…
A
∈
V
61
ovex
⊢
0
…
A
∈
V
62
60
61
elmap
⊢
coeff
a
↾
0
…
A
∈
−
A
…
A
0
…
A
↔
coeff
a
↾
0
…
A
:
0
…
A
⟶
−
A
…
A
63
59
62
sylibr
⊢
A
∈
ℕ
0
∧
a
∈
Poly
ℤ
∧
∀
e
∈
ℕ
0
coeff
a
e
≤
A
→
coeff
a
↾
0
…
A
∈
−
A
…
A
0
…
A
64
63
ex
⊢
A
∈
ℕ
0
→
a
∈
Poly
ℤ
∧
∀
e
∈
ℕ
0
coeff
a
e
≤
A
→
coeff
a
↾
0
…
A
∈
−
A
…
A
0
…
A
65
31
64
syl5
⊢
A
∈
ℕ
0
→
a
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
→
coeff
a
↾
0
…
A
∈
−
A
…
A
0
…
A
66
simp2
⊢
a
≠
0
𝑝
∧
deg
a
≤
A
∧
∀
e
∈
ℕ
0
coeff
a
e
≤
A
→
deg
a
≤
A
67
66
anim2i
⊢
a
∈
Poly
ℤ
∧
a
≠
0
𝑝
∧
deg
a
≤
A
∧
∀
e
∈
ℕ
0
coeff
a
e
≤
A
→
a
∈
Poly
ℤ
∧
deg
a
≤
A
68
28
67
sylbi
⊢
a
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
→
a
∈
Poly
ℤ
∧
deg
a
≤
A
69
neeq1
⊢
d
=
b
→
d
≠
0
𝑝
↔
b
≠
0
𝑝
70
fveq2
⊢
d
=
b
→
deg
d
=
deg
b
71
70
breq1d
⊢
d
=
b
→
deg
d
≤
A
↔
deg
b
≤
A
72
fveq2
⊢
d
=
b
→
coeff
d
=
coeff
b
73
72
fveq1d
⊢
d
=
b
→
coeff
d
e
=
coeff
b
e
74
73
fveq2d
⊢
d
=
b
→
coeff
d
e
=
coeff
b
e
75
74
breq1d
⊢
d
=
b
→
coeff
d
e
≤
A
↔
coeff
b
e
≤
A
76
75
ralbidv
⊢
d
=
b
→
∀
e
∈
ℕ
0
coeff
d
e
≤
A
↔
∀
e
∈
ℕ
0
coeff
b
e
≤
A
77
69
71
76
3anbi123d
⊢
d
=
b
→
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
↔
b
≠
0
𝑝
∧
deg
b
≤
A
∧
∀
e
∈
ℕ
0
coeff
b
e
≤
A
78
77
elrab
⊢
b
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
↔
b
∈
Poly
ℤ
∧
b
≠
0
𝑝
∧
deg
b
≤
A
∧
∀
e
∈
ℕ
0
coeff
b
e
≤
A
79
simp2
⊢
b
≠
0
𝑝
∧
deg
b
≤
A
∧
∀
e
∈
ℕ
0
coeff
b
e
≤
A
→
deg
b
≤
A
80
79
anim2i
⊢
b
∈
Poly
ℤ
∧
b
≠
0
𝑝
∧
deg
b
≤
A
∧
∀
e
∈
ℕ
0
coeff
b
e
≤
A
→
b
∈
Poly
ℤ
∧
deg
b
≤
A
81
78
80
sylbi
⊢
b
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
→
b
∈
Poly
ℤ
∧
deg
b
≤
A
82
simplll
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
→
a
∈
Poly
ℤ
83
plyf
⊢
a
∈
Poly
ℤ
→
a
:
ℂ
⟶
ℂ
84
ffn
⊢
a
:
ℂ
⟶
ℂ
→
a
Fn
ℂ
85
82
83
84
3syl
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
→
a
Fn
ℂ
86
simplrl
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
→
b
∈
Poly
ℤ
87
plyf
⊢
b
∈
Poly
ℤ
→
b
:
ℂ
⟶
ℂ
88
ffn
⊢
b
:
ℂ
⟶
ℂ
→
b
Fn
ℂ
89
86
87
88
3syl
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
→
b
Fn
ℂ
90
simplrr
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
∧
c
∈
ℂ
→
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
91
90
adantr
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
∧
c
∈
ℂ
∧
d
∈
0
…
A
→
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
92
91
fveq1d
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
∧
c
∈
ℂ
∧
d
∈
0
…
A
→
coeff
a
↾
0
…
A
d
=
coeff
b
↾
0
…
A
d
93
fvres
⊢
d
∈
0
…
A
→
coeff
a
↾
0
…
A
d
=
coeff
a
d
94
93
adantl
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
∧
c
∈
ℂ
∧
d
∈
0
…
A
→
coeff
a
↾
0
…
A
d
=
coeff
a
d
95
fvres
⊢
d
∈
0
…
A
→
coeff
b
↾
0
…
A
d
=
coeff
b
d
96
95
adantl
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
∧
c
∈
ℂ
∧
d
∈
0
…
A
→
coeff
b
↾
0
…
A
d
=
coeff
b
d
97
92
94
96
3eqtr3d
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
∧
c
∈
ℂ
∧
d
∈
0
…
A
→
coeff
a
d
=
coeff
b
d
98
97
oveq1d
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
∧
c
∈
ℂ
∧
d
∈
0
…
A
→
coeff
a
d
c
d
=
coeff
b
d
c
d
99
98
sumeq2dv
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
∧
c
∈
ℂ
→
∑
d
=
0
A
coeff
a
d
c
d
=
∑
d
=
0
A
coeff
b
d
c
d
100
simp-4l
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
∧
c
∈
ℂ
→
a
∈
Poly
ℤ
101
simp-4r
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
∧
c
∈
ℂ
→
deg
a
≤
A
102
dgrcl
⊢
a
∈
Poly
ℤ
→
deg
a
∈
ℕ
0
103
nn0z
⊢
deg
a
∈
ℕ
0
→
deg
a
∈
ℤ
104
100
102
103
3syl
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
∧
c
∈
ℂ
→
deg
a
∈
ℤ
105
simplrl
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
∧
c
∈
ℂ
→
A
∈
ℕ
0
106
105
nn0zd
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
∧
c
∈
ℂ
→
A
∈
ℤ
107
eluz
⊢
deg
a
∈
ℤ
∧
A
∈
ℤ
→
A
∈
ℤ
≥
deg
a
↔
deg
a
≤
A
108
104
106
107
syl2anc
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
∧
c
∈
ℂ
→
A
∈
ℤ
≥
deg
a
↔
deg
a
≤
A
109
101
108
mpbird
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
∧
c
∈
ℂ
→
A
∈
ℤ
≥
deg
a
110
simpr
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
∧
c
∈
ℂ
→
c
∈
ℂ
111
eqid
⊢
deg
a
=
deg
a
112
33
111
coeid3
⊢
a
∈
Poly
ℤ
∧
A
∈
ℤ
≥
deg
a
∧
c
∈
ℂ
→
a
c
=
∑
d
=
0
A
coeff
a
d
c
d
113
100
109
110
112
syl3anc
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
∧
c
∈
ℂ
→
a
c
=
∑
d
=
0
A
coeff
a
d
c
d
114
simp1rl
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
∧
c
∈
ℂ
→
b
∈
Poly
ℤ
115
114
3expa
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
∧
c
∈
ℂ
→
b
∈
Poly
ℤ
116
simplrr
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
→
deg
b
≤
A
117
116
adantr
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
∧
c
∈
ℂ
→
deg
b
≤
A
118
dgrcl
⊢
b
∈
Poly
ℤ
→
deg
b
∈
ℕ
0
119
nn0z
⊢
deg
b
∈
ℕ
0
→
deg
b
∈
ℤ
120
115
118
119
3syl
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
∧
c
∈
ℂ
→
deg
b
∈
ℤ
121
eluz
⊢
deg
b
∈
ℤ
∧
A
∈
ℤ
→
A
∈
ℤ
≥
deg
b
↔
deg
b
≤
A
122
120
106
121
syl2anc
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
∧
c
∈
ℂ
→
A
∈
ℤ
≥
deg
b
↔
deg
b
≤
A
123
117
122
mpbird
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
∧
c
∈
ℂ
→
A
∈
ℤ
≥
deg
b
124
eqid
⊢
coeff
b
=
coeff
b
125
eqid
⊢
deg
b
=
deg
b
126
124
125
coeid3
⊢
b
∈
Poly
ℤ
∧
A
∈
ℤ
≥
deg
b
∧
c
∈
ℂ
→
b
c
=
∑
d
=
0
A
coeff
b
d
c
d
127
115
123
110
126
syl3anc
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
∧
c
∈
ℂ
→
b
c
=
∑
d
=
0
A
coeff
b
d
c
d
128
99
113
127
3eqtr4d
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
∧
c
∈
ℂ
→
a
c
=
b
c
129
85
89
128
eqfnfvd
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
∧
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
→
a
=
b
130
129
expr
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
→
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
→
a
=
b
131
fveq2
⊢
a
=
b
→
coeff
a
=
coeff
b
132
131
reseq1d
⊢
a
=
b
→
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
133
130
132
impbid1
⊢
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
∧
A
∈
ℕ
0
→
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
↔
a
=
b
134
133
expcom
⊢
A
∈
ℕ
0
→
a
∈
Poly
ℤ
∧
deg
a
≤
A
∧
b
∈
Poly
ℤ
∧
deg
b
≤
A
→
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
↔
a
=
b
135
68
81
134
syl2ani
⊢
A
∈
ℕ
0
→
a
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
∧
b
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
→
coeff
a
↾
0
…
A
=
coeff
b
↾
0
…
A
↔
a
=
b
136
65
135
dom2d
⊢
A
∈
ℕ
0
→
−
A
…
A
0
…
A
∈
V
→
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
≼
−
A
…
A
0
…
A
137
18
136
mpi
⊢
A
∈
ℕ
0
→
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
≼
−
A
…
A
0
…
A
138
domfi
⊢
−
A
…
A
0
…
A
∈
Fin
∧
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
≼
−
A
…
A
0
…
A
→
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
∈
Fin
139
17
137
138
syl2anc
⊢
A
∈
ℕ
0
→
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
∈
Fin
140
neeq1
⊢
d
=
c
→
d
≠
0
𝑝
↔
c
≠
0
𝑝
141
fveq2
⊢
d
=
c
→
deg
d
=
deg
c
142
141
breq1d
⊢
d
=
c
→
deg
d
≤
A
↔
deg
c
≤
A
143
fveq2
⊢
d
=
c
→
coeff
d
=
coeff
c
144
143
fveq1d
⊢
d
=
c
→
coeff
d
e
=
coeff
c
e
145
144
fveq2d
⊢
d
=
c
→
coeff
d
e
=
coeff
c
e
146
145
breq1d
⊢
d
=
c
→
coeff
d
e
≤
A
↔
coeff
c
e
≤
A
147
146
ralbidv
⊢
d
=
c
→
∀
e
∈
ℕ
0
coeff
d
e
≤
A
↔
∀
e
∈
ℕ
0
coeff
c
e
≤
A
148
140
142
147
3anbi123d
⊢
d
=
c
→
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
↔
c
≠
0
𝑝
∧
deg
c
≤
A
∧
∀
e
∈
ℕ
0
coeff
c
e
≤
A
149
148
elrab
⊢
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
↔
c
∈
Poly
ℤ
∧
c
≠
0
𝑝
∧
deg
c
≤
A
∧
∀
e
∈
ℕ
0
coeff
c
e
≤
A
150
simp1
⊢
c
≠
0
𝑝
∧
deg
c
≤
A
∧
∀
e
∈
ℕ
0
coeff
c
e
≤
A
→
c
≠
0
𝑝
151
150
anim2i
⊢
c
∈
Poly
ℤ
∧
c
≠
0
𝑝
∧
deg
c
≤
A
∧
∀
e
∈
ℕ
0
coeff
c
e
≤
A
→
c
∈
Poly
ℤ
∧
c
≠
0
𝑝
152
149
151
sylbi
⊢
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
→
c
∈
Poly
ℤ
∧
c
≠
0
𝑝
153
fveqeq2
⊢
b
=
a
→
c
b
=
0
↔
c
a
=
0
154
153
elrab
⊢
a
∈
b
∈
ℂ
|
c
b
=
0
↔
a
∈
ℂ
∧
c
a
=
0
155
plyf
⊢
c
∈
Poly
ℤ
→
c
:
ℂ
⟶
ℂ
156
155
ffnd
⊢
c
∈
Poly
ℤ
→
c
Fn
ℂ
157
156
adantr
⊢
c
∈
Poly
ℤ
∧
c
≠
0
𝑝
→
c
Fn
ℂ
158
fniniseg
⊢
c
Fn
ℂ
→
a
∈
c
-1
0
↔
a
∈
ℂ
∧
c
a
=
0
159
157
158
syl
⊢
c
∈
Poly
ℤ
∧
c
≠
0
𝑝
→
a
∈
c
-1
0
↔
a
∈
ℂ
∧
c
a
=
0
160
154
159
bitr4id
⊢
c
∈
Poly
ℤ
∧
c
≠
0
𝑝
→
a
∈
b
∈
ℂ
|
c
b
=
0
↔
a
∈
c
-1
0
161
160
eqrdv
⊢
c
∈
Poly
ℤ
∧
c
≠
0
𝑝
→
b
∈
ℂ
|
c
b
=
0
=
c
-1
0
162
eqid
⊢
c
-1
0
=
c
-1
0
163
162
fta1
⊢
c
∈
Poly
ℤ
∧
c
≠
0
𝑝
→
c
-1
0
∈
Fin
∧
c
-1
0
≤
deg
c
164
163
simpld
⊢
c
∈
Poly
ℤ
∧
c
≠
0
𝑝
→
c
-1
0
∈
Fin
165
161
164
eqeltrd
⊢
c
∈
Poly
ℤ
∧
c
≠
0
𝑝
→
b
∈
ℂ
|
c
b
=
0
∈
Fin
166
165
a1i
⊢
A
∈
ℕ
0
→
c
∈
Poly
ℤ
∧
c
≠
0
𝑝
→
b
∈
ℂ
|
c
b
=
0
∈
Fin
167
152
166
syl5
⊢
A
∈
ℕ
0
→
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
→
b
∈
ℂ
|
c
b
=
0
∈
Fin
168
167
ralrimiv
⊢
A
∈
ℕ
0
→
∀
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
b
∈
ℂ
|
c
b
=
0
∈
Fin
169
iunfi
⊢
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
∈
Fin
∧
∀
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
b
∈
ℂ
|
c
b
=
0
∈
Fin
→
⋃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
b
∈
ℂ
|
c
b
=
0
∈
Fin
170
139
168
169
syl2anc
⊢
A
∈
ℕ
0
→
⋃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
b
∈
ℂ
|
c
b
=
0
∈
Fin
171
12
170
eqeltrrid
⊢
A
∈
ℕ
0
→
b
∈
ℂ
|
∃
c
∈
d
∈
Poly
ℤ
|
d
≠
0
𝑝
∧
deg
d
≤
A
∧
∀
e
∈
ℕ
0
coeff
d
e
≤
A
c
b
=
0
∈
Fin
172
11
171
eqeltrd
⊢
A
∈
ℕ
0
→
H
A
∈
Fin