Metamath Proof Explorer


Theorem aannenlem1

Description: Lemma for aannen . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypothesis aannenlem.a H=a0b|cdPoly|d0𝑝degdae0coeffdeacb=0
Assertion aannenlem1 A0HAFin

Proof

Step Hyp Ref Expression
1 aannenlem.a H=a0b|cdPoly|d0𝑝degdae0coeffdeacb=0
2 breq2 a=AdegdadegdA
3 breq2 a=AcoeffdeacoeffdeA
4 3 ralbidv a=Ae0coeffdeae0coeffdeA
5 2 4 3anbi23d a=Ad0𝑝degdae0coeffdead0𝑝degdAe0coeffdeA
6 5 rabbidv a=AdPoly|d0𝑝degdae0coeffdea=dPoly|d0𝑝degdAe0coeffdeA
7 6 rexeqdv a=AcdPoly|d0𝑝degdae0coeffdeacb=0cdPoly|d0𝑝degdAe0coeffdeAcb=0
8 7 rabbidv a=Ab|cdPoly|d0𝑝degdae0coeffdeacb=0=b|cdPoly|d0𝑝degdAe0coeffdeAcb=0
9 cnex V
10 9 rabex b|cdPoly|d0𝑝degdAe0coeffdeAcb=0V
11 8 1 10 fvmpt A0HA=b|cdPoly|d0𝑝degdAe0coeffdeAcb=0
12 iunrab cdPoly|d0𝑝degdAe0coeffdeAb|cb=0=b|cdPoly|d0𝑝degdAe0coeffdeAcb=0
13 fzfi AAFin
14 fzfi 0AFin
15 mapfi AAFin0AFinAA0AFin
16 13 14 15 mp2an AA0AFin
17 16 a1i A0AA0AFin
18 ovex AA0AV
19 neeq1 d=ad0𝑝a0𝑝
20 fveq2 d=adegd=dega
21 20 breq1d d=adegdAdegaA
22 fveq2 d=acoeffd=coeffa
23 22 fveq1d d=acoeffde=coeffae
24 23 fveq2d d=acoeffde=coeffae
25 24 breq1d d=acoeffdeAcoeffaeA
26 25 ralbidv d=ae0coeffdeAe0coeffaeA
27 19 21 26 3anbi123d d=ad0𝑝degdAe0coeffdeAa0𝑝degaAe0coeffaeA
28 27 elrab adPoly|d0𝑝degdAe0coeffdeAaPolya0𝑝degaAe0coeffaeA
29 simp3 a0𝑝degaAe0coeffaeAe0coeffaeA
30 29 anim2i aPolya0𝑝degaAe0coeffaeAaPolye0coeffaeA
31 28 30 sylbi adPoly|d0𝑝degdAe0coeffdeAaPolye0coeffaeA
32 0z 0
33 eqid coeffa=coeffa
34 33 coef2 aPoly0coeffa:0
35 32 34 mpan2 aPolycoeffa:0
36 35 ad2antrl A0aPolye0coeffaeAcoeffa:0
37 36 ffnd A0aPolye0coeffaeAcoeffaFn0
38 35 adantl A0aPolycoeffa:0
39 38 ffvelcdmda A0aPolye0coeffae
40 39 zred A0aPolye0coeffae
41 nn0re A0A
42 41 ad2antrr A0aPolye0A
43 40 42 absled A0aPolye0coeffaeAAcoeffaecoeffaeA
44 nn0z A0A
45 44 ad2antrr A0aPolye0A
46 45 znegcld A0aPolye0A
47 elfz coeffaeAAcoeffaeAAAcoeffaecoeffaeA
48 39 46 45 47 syl3anc A0aPolye0coeffaeAAAcoeffaecoeffaeA
49 43 48 bitr4d A0aPolye0coeffaeAcoeffaeAA
50 49 biimpd A0aPolye0coeffaeAcoeffaeAA
51 50 ralimdva A0aPolye0coeffaeAe0coeffaeAA
52 51 impr A0aPolye0coeffaeAe0coeffaeAA
53 fnfvrnss coeffaFn0e0coeffaeAArancoeffaAA
54 37 52 53 syl2anc A0aPolye0coeffaeArancoeffaAA
55 df-f coeffa:0AAcoeffaFn0rancoeffaAA
56 37 54 55 sylanbrc A0aPolye0coeffaeAcoeffa:0AA
57 fz0ssnn0 0A0
58 fssres coeffa:0AA0A0coeffa0A:0AAA
59 56 57 58 sylancl A0aPolye0coeffaeAcoeffa0A:0AAA
60 ovex AAV
61 ovex 0AV
62 60 61 elmap coeffa0AAA0Acoeffa0A:0AAA
63 59 62 sylibr A0aPolye0coeffaeAcoeffa0AAA0A
64 63 ex A0aPolye0coeffaeAcoeffa0AAA0A
65 31 64 syl5 A0adPoly|d0𝑝degdAe0coeffdeAcoeffa0AAA0A
66 simp2 a0𝑝degaAe0coeffaeAdegaA
67 66 anim2i aPolya0𝑝degaAe0coeffaeAaPolydegaA
68 28 67 sylbi adPoly|d0𝑝degdAe0coeffdeAaPolydegaA
69 neeq1 d=bd0𝑝b0𝑝
70 fveq2 d=bdegd=degb
71 70 breq1d d=bdegdAdegbA
72 fveq2 d=bcoeffd=coeffb
73 72 fveq1d d=bcoeffde=coeffbe
74 73 fveq2d d=bcoeffde=coeffbe
75 74 breq1d d=bcoeffdeAcoeffbeA
76 75 ralbidv d=be0coeffdeAe0coeffbeA
77 69 71 76 3anbi123d d=bd0𝑝degdAe0coeffdeAb0𝑝degbAe0coeffbeA
78 77 elrab bdPoly|d0𝑝degdAe0coeffdeAbPolyb0𝑝degbAe0coeffbeA
79 simp2 b0𝑝degbAe0coeffbeAdegbA
80 79 anim2i bPolyb0𝑝degbAe0coeffbeAbPolydegbA
81 78 80 sylbi bdPoly|d0𝑝degdAe0coeffdeAbPolydegbA
82 simplll aPolydegaAbPolydegbAA0coeffa0A=coeffb0AaPoly
83 plyf aPolya:
84 ffn a:aFn
85 82 83 84 3syl aPolydegaAbPolydegbAA0coeffa0A=coeffb0AaFn
86 simplrl aPolydegaAbPolydegbAA0coeffa0A=coeffb0AbPoly
87 plyf bPolyb:
88 ffn b:bFn
89 86 87 88 3syl aPolydegaAbPolydegbAA0coeffa0A=coeffb0AbFn
90 simplrr aPolydegaAbPolydegbAA0coeffa0A=coeffb0Accoeffa0A=coeffb0A
91 90 adantr aPolydegaAbPolydegbAA0coeffa0A=coeffb0Acd0Acoeffa0A=coeffb0A
92 91 fveq1d aPolydegaAbPolydegbAA0coeffa0A=coeffb0Acd0Acoeffa0Ad=coeffb0Ad
93 fvres d0Acoeffa0Ad=coeffad
94 93 adantl aPolydegaAbPolydegbAA0coeffa0A=coeffb0Acd0Acoeffa0Ad=coeffad
95 fvres d0Acoeffb0Ad=coeffbd
96 95 adantl aPolydegaAbPolydegbAA0coeffa0A=coeffb0Acd0Acoeffb0Ad=coeffbd
97 92 94 96 3eqtr3d aPolydegaAbPolydegbAA0coeffa0A=coeffb0Acd0Acoeffad=coeffbd
98 97 oveq1d aPolydegaAbPolydegbAA0coeffa0A=coeffb0Acd0Acoeffadcd=coeffbdcd
99 98 sumeq2dv aPolydegaAbPolydegbAA0coeffa0A=coeffb0Acd=0Acoeffadcd=d=0Acoeffbdcd
100 simp-4l aPolydegaAbPolydegbAA0coeffa0A=coeffb0AcaPoly
101 simp-4r aPolydegaAbPolydegbAA0coeffa0A=coeffb0AcdegaA
102 dgrcl aPolydega0
103 nn0z dega0dega
104 100 102 103 3syl aPolydegaAbPolydegbAA0coeffa0A=coeffb0Acdega
105 simplrl aPolydegaAbPolydegbAA0coeffa0A=coeffb0AcA0
106 105 nn0zd aPolydegaAbPolydegbAA0coeffa0A=coeffb0AcA
107 eluz degaAAdegadegaA
108 104 106 107 syl2anc aPolydegaAbPolydegbAA0coeffa0A=coeffb0AcAdegadegaA
109 101 108 mpbird aPolydegaAbPolydegbAA0coeffa0A=coeffb0AcAdega
110 simpr aPolydegaAbPolydegbAA0coeffa0A=coeffb0Acc
111 eqid dega=dega
112 33 111 coeid3 aPolyAdegacac=d=0Acoeffadcd
113 100 109 110 112 syl3anc aPolydegaAbPolydegbAA0coeffa0A=coeffb0Acac=d=0Acoeffadcd
114 simp1rl aPolydegaAbPolydegbAA0coeffa0A=coeffb0AcbPoly
115 114 3expa aPolydegaAbPolydegbAA0coeffa0A=coeffb0AcbPoly
116 simplrr aPolydegaAbPolydegbAA0coeffa0A=coeffb0AdegbA
117 116 adantr aPolydegaAbPolydegbAA0coeffa0A=coeffb0AcdegbA
118 dgrcl bPolydegb0
119 nn0z degb0degb
120 115 118 119 3syl aPolydegaAbPolydegbAA0coeffa0A=coeffb0Acdegb
121 eluz degbAAdegbdegbA
122 120 106 121 syl2anc aPolydegaAbPolydegbAA0coeffa0A=coeffb0AcAdegbdegbA
123 117 122 mpbird aPolydegaAbPolydegbAA0coeffa0A=coeffb0AcAdegb
124 eqid coeffb=coeffb
125 eqid degb=degb
126 124 125 coeid3 bPolyAdegbcbc=d=0Acoeffbdcd
127 115 123 110 126 syl3anc aPolydegaAbPolydegbAA0coeffa0A=coeffb0Acbc=d=0Acoeffbdcd
128 99 113 127 3eqtr4d aPolydegaAbPolydegbAA0coeffa0A=coeffb0Acac=bc
129 85 89 128 eqfnfvd aPolydegaAbPolydegbAA0coeffa0A=coeffb0Aa=b
130 129 expr aPolydegaAbPolydegbAA0coeffa0A=coeffb0Aa=b
131 fveq2 a=bcoeffa=coeffb
132 131 reseq1d a=bcoeffa0A=coeffb0A
133 130 132 impbid1 aPolydegaAbPolydegbAA0coeffa0A=coeffb0Aa=b
134 133 expcom A0aPolydegaAbPolydegbAcoeffa0A=coeffb0Aa=b
135 68 81 134 syl2ani A0adPoly|d0𝑝degdAe0coeffdeAbdPoly|d0𝑝degdAe0coeffdeAcoeffa0A=coeffb0Aa=b
136 65 135 dom2d A0AA0AVdPoly|d0𝑝degdAe0coeffdeAAA0A
137 18 136 mpi A0dPoly|d0𝑝degdAe0coeffdeAAA0A
138 domfi AA0AFindPoly|d0𝑝degdAe0coeffdeAAA0AdPoly|d0𝑝degdAe0coeffdeAFin
139 17 137 138 syl2anc A0dPoly|d0𝑝degdAe0coeffdeAFin
140 neeq1 d=cd0𝑝c0𝑝
141 fveq2 d=cdegd=degc
142 141 breq1d d=cdegdAdegcA
143 fveq2 d=ccoeffd=coeffc
144 143 fveq1d d=ccoeffde=coeffce
145 144 fveq2d d=ccoeffde=coeffce
146 145 breq1d d=ccoeffdeAcoeffceA
147 146 ralbidv d=ce0coeffdeAe0coeffceA
148 140 142 147 3anbi123d d=cd0𝑝degdAe0coeffdeAc0𝑝degcAe0coeffceA
149 148 elrab cdPoly|d0𝑝degdAe0coeffdeAcPolyc0𝑝degcAe0coeffceA
150 simp1 c0𝑝degcAe0coeffceAc0𝑝
151 150 anim2i cPolyc0𝑝degcAe0coeffceAcPolyc0𝑝
152 149 151 sylbi cdPoly|d0𝑝degdAe0coeffdeAcPolyc0𝑝
153 fveqeq2 b=acb=0ca=0
154 153 elrab ab|cb=0aca=0
155 plyf cPolyc:
156 155 ffnd cPolycFn
157 156 adantr cPolyc0𝑝cFn
158 fniniseg cFnac-10aca=0
159 157 158 syl cPolyc0𝑝ac-10aca=0
160 154 159 bitr4id cPolyc0𝑝ab|cb=0ac-10
161 160 eqrdv cPolyc0𝑝b|cb=0=c-10
162 eqid c-10=c-10
163 162 fta1 cPolyc0𝑝c-10Finc-10degc
164 163 simpld cPolyc0𝑝c-10Fin
165 161 164 eqeltrd cPolyc0𝑝b|cb=0Fin
166 165 a1i A0cPolyc0𝑝b|cb=0Fin
167 152 166 syl5 A0cdPoly|d0𝑝degdAe0coeffdeAb|cb=0Fin
168 167 ralrimiv A0cdPoly|d0𝑝degdAe0coeffdeAb|cb=0Fin
169 iunfi dPoly|d0𝑝degdAe0coeffdeAFincdPoly|d0𝑝degdAe0coeffdeAb|cb=0FincdPoly|d0𝑝degdAe0coeffdeAb|cb=0Fin
170 139 168 169 syl2anc A0cdPoly|d0𝑝degdAe0coeffdeAb|cb=0Fin
171 12 170 eqeltrrid A0b|cdPoly|d0𝑝degdAe0coeffdeAcb=0Fin
172 11 171 eqeltrd A0HAFin