| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aannenlem.a |
|- H = ( a e. NN0 |-> { b e. CC | E. c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ a /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ a ) } ( c ` b ) = 0 } ) |
| 2 |
|
breq2 |
|- ( a = A -> ( ( deg ` d ) <_ a <-> ( deg ` d ) <_ A ) ) |
| 3 |
|
breq2 |
|- ( a = A -> ( ( abs ` ( ( coeff ` d ) ` e ) ) <_ a <-> ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) ) |
| 4 |
3
|
ralbidv |
|- ( a = A -> ( A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ a <-> A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) ) |
| 5 |
2 4
|
3anbi23d |
|- ( a = A -> ( ( d =/= 0p /\ ( deg ` d ) <_ a /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ a ) <-> ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) ) ) |
| 6 |
5
|
rabbidv |
|- ( a = A -> { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ a /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ a ) } = { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } ) |
| 7 |
6
|
rexeqdv |
|- ( a = A -> ( E. c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ a /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ a ) } ( c ` b ) = 0 <-> E. c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } ( c ` b ) = 0 ) ) |
| 8 |
7
|
rabbidv |
|- ( a = A -> { b e. CC | E. c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ a /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ a ) } ( c ` b ) = 0 } = { b e. CC | E. c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } ( c ` b ) = 0 } ) |
| 9 |
|
cnex |
|- CC e. _V |
| 10 |
9
|
rabex |
|- { b e. CC | E. c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } ( c ` b ) = 0 } e. _V |
| 11 |
8 1 10
|
fvmpt |
|- ( A e. NN0 -> ( H ` A ) = { b e. CC | E. c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } ( c ` b ) = 0 } ) |
| 12 |
|
iunrab |
|- U_ c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } { b e. CC | ( c ` b ) = 0 } = { b e. CC | E. c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } ( c ` b ) = 0 } |
| 13 |
|
fzfi |
|- ( -u A ... A ) e. Fin |
| 14 |
|
fzfi |
|- ( 0 ... A ) e. Fin |
| 15 |
|
mapfi |
|- ( ( ( -u A ... A ) e. Fin /\ ( 0 ... A ) e. Fin ) -> ( ( -u A ... A ) ^m ( 0 ... A ) ) e. Fin ) |
| 16 |
13 14 15
|
mp2an |
|- ( ( -u A ... A ) ^m ( 0 ... A ) ) e. Fin |
| 17 |
16
|
a1i |
|- ( A e. NN0 -> ( ( -u A ... A ) ^m ( 0 ... A ) ) e. Fin ) |
| 18 |
|
ovex |
|- ( ( -u A ... A ) ^m ( 0 ... A ) ) e. _V |
| 19 |
|
neeq1 |
|- ( d = a -> ( d =/= 0p <-> a =/= 0p ) ) |
| 20 |
|
fveq2 |
|- ( d = a -> ( deg ` d ) = ( deg ` a ) ) |
| 21 |
20
|
breq1d |
|- ( d = a -> ( ( deg ` d ) <_ A <-> ( deg ` a ) <_ A ) ) |
| 22 |
|
fveq2 |
|- ( d = a -> ( coeff ` d ) = ( coeff ` a ) ) |
| 23 |
22
|
fveq1d |
|- ( d = a -> ( ( coeff ` d ) ` e ) = ( ( coeff ` a ) ` e ) ) |
| 24 |
23
|
fveq2d |
|- ( d = a -> ( abs ` ( ( coeff ` d ) ` e ) ) = ( abs ` ( ( coeff ` a ) ` e ) ) ) |
| 25 |
24
|
breq1d |
|- ( d = a -> ( ( abs ` ( ( coeff ` d ) ` e ) ) <_ A <-> ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) |
| 26 |
25
|
ralbidv |
|- ( d = a -> ( A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A <-> A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) |
| 27 |
19 21 26
|
3anbi123d |
|- ( d = a -> ( ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) <-> ( a =/= 0p /\ ( deg ` a ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) ) |
| 28 |
27
|
elrab |
|- ( a e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } <-> ( a e. ( Poly ` ZZ ) /\ ( a =/= 0p /\ ( deg ` a ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) ) |
| 29 |
|
simp3 |
|- ( ( a =/= 0p /\ ( deg ` a ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) -> A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) |
| 30 |
29
|
anim2i |
|- ( ( a e. ( Poly ` ZZ ) /\ ( a =/= 0p /\ ( deg ` a ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) -> ( a e. ( Poly ` ZZ ) /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) |
| 31 |
28 30
|
sylbi |
|- ( a e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } -> ( a e. ( Poly ` ZZ ) /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) |
| 32 |
|
0z |
|- 0 e. ZZ |
| 33 |
|
eqid |
|- ( coeff ` a ) = ( coeff ` a ) |
| 34 |
33
|
coef2 |
|- ( ( a e. ( Poly ` ZZ ) /\ 0 e. ZZ ) -> ( coeff ` a ) : NN0 --> ZZ ) |
| 35 |
32 34
|
mpan2 |
|- ( a e. ( Poly ` ZZ ) -> ( coeff ` a ) : NN0 --> ZZ ) |
| 36 |
35
|
ad2antrl |
|- ( ( A e. NN0 /\ ( a e. ( Poly ` ZZ ) /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) -> ( coeff ` a ) : NN0 --> ZZ ) |
| 37 |
36
|
ffnd |
|- ( ( A e. NN0 /\ ( a e. ( Poly ` ZZ ) /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) -> ( coeff ` a ) Fn NN0 ) |
| 38 |
35
|
adantl |
|- ( ( A e. NN0 /\ a e. ( Poly ` ZZ ) ) -> ( coeff ` a ) : NN0 --> ZZ ) |
| 39 |
38
|
ffvelcdmda |
|- ( ( ( A e. NN0 /\ a e. ( Poly ` ZZ ) ) /\ e e. NN0 ) -> ( ( coeff ` a ) ` e ) e. ZZ ) |
| 40 |
39
|
zred |
|- ( ( ( A e. NN0 /\ a e. ( Poly ` ZZ ) ) /\ e e. NN0 ) -> ( ( coeff ` a ) ` e ) e. RR ) |
| 41 |
|
nn0re |
|- ( A e. NN0 -> A e. RR ) |
| 42 |
41
|
ad2antrr |
|- ( ( ( A e. NN0 /\ a e. ( Poly ` ZZ ) ) /\ e e. NN0 ) -> A e. RR ) |
| 43 |
40 42
|
absled |
|- ( ( ( A e. NN0 /\ a e. ( Poly ` ZZ ) ) /\ e e. NN0 ) -> ( ( abs ` ( ( coeff ` a ) ` e ) ) <_ A <-> ( -u A <_ ( ( coeff ` a ) ` e ) /\ ( ( coeff ` a ) ` e ) <_ A ) ) ) |
| 44 |
|
nn0z |
|- ( A e. NN0 -> A e. ZZ ) |
| 45 |
44
|
ad2antrr |
|- ( ( ( A e. NN0 /\ a e. ( Poly ` ZZ ) ) /\ e e. NN0 ) -> A e. ZZ ) |
| 46 |
45
|
znegcld |
|- ( ( ( A e. NN0 /\ a e. ( Poly ` ZZ ) ) /\ e e. NN0 ) -> -u A e. ZZ ) |
| 47 |
|
elfz |
|- ( ( ( ( coeff ` a ) ` e ) e. ZZ /\ -u A e. ZZ /\ A e. ZZ ) -> ( ( ( coeff ` a ) ` e ) e. ( -u A ... A ) <-> ( -u A <_ ( ( coeff ` a ) ` e ) /\ ( ( coeff ` a ) ` e ) <_ A ) ) ) |
| 48 |
39 46 45 47
|
syl3anc |
|- ( ( ( A e. NN0 /\ a e. ( Poly ` ZZ ) ) /\ e e. NN0 ) -> ( ( ( coeff ` a ) ` e ) e. ( -u A ... A ) <-> ( -u A <_ ( ( coeff ` a ) ` e ) /\ ( ( coeff ` a ) ` e ) <_ A ) ) ) |
| 49 |
43 48
|
bitr4d |
|- ( ( ( A e. NN0 /\ a e. ( Poly ` ZZ ) ) /\ e e. NN0 ) -> ( ( abs ` ( ( coeff ` a ) ` e ) ) <_ A <-> ( ( coeff ` a ) ` e ) e. ( -u A ... A ) ) ) |
| 50 |
49
|
biimpd |
|- ( ( ( A e. NN0 /\ a e. ( Poly ` ZZ ) ) /\ e e. NN0 ) -> ( ( abs ` ( ( coeff ` a ) ` e ) ) <_ A -> ( ( coeff ` a ) ` e ) e. ( -u A ... A ) ) ) |
| 51 |
50
|
ralimdva |
|- ( ( A e. NN0 /\ a e. ( Poly ` ZZ ) ) -> ( A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A -> A. e e. NN0 ( ( coeff ` a ) ` e ) e. ( -u A ... A ) ) ) |
| 52 |
51
|
impr |
|- ( ( A e. NN0 /\ ( a e. ( Poly ` ZZ ) /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) -> A. e e. NN0 ( ( coeff ` a ) ` e ) e. ( -u A ... A ) ) |
| 53 |
|
fnfvrnss |
|- ( ( ( coeff ` a ) Fn NN0 /\ A. e e. NN0 ( ( coeff ` a ) ` e ) e. ( -u A ... A ) ) -> ran ( coeff ` a ) C_ ( -u A ... A ) ) |
| 54 |
37 52 53
|
syl2anc |
|- ( ( A e. NN0 /\ ( a e. ( Poly ` ZZ ) /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) -> ran ( coeff ` a ) C_ ( -u A ... A ) ) |
| 55 |
|
df-f |
|- ( ( coeff ` a ) : NN0 --> ( -u A ... A ) <-> ( ( coeff ` a ) Fn NN0 /\ ran ( coeff ` a ) C_ ( -u A ... A ) ) ) |
| 56 |
37 54 55
|
sylanbrc |
|- ( ( A e. NN0 /\ ( a e. ( Poly ` ZZ ) /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) -> ( coeff ` a ) : NN0 --> ( -u A ... A ) ) |
| 57 |
|
fz0ssnn0 |
|- ( 0 ... A ) C_ NN0 |
| 58 |
|
fssres |
|- ( ( ( coeff ` a ) : NN0 --> ( -u A ... A ) /\ ( 0 ... A ) C_ NN0 ) -> ( ( coeff ` a ) |` ( 0 ... A ) ) : ( 0 ... A ) --> ( -u A ... A ) ) |
| 59 |
56 57 58
|
sylancl |
|- ( ( A e. NN0 /\ ( a e. ( Poly ` ZZ ) /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) -> ( ( coeff ` a ) |` ( 0 ... A ) ) : ( 0 ... A ) --> ( -u A ... A ) ) |
| 60 |
|
ovex |
|- ( -u A ... A ) e. _V |
| 61 |
|
ovex |
|- ( 0 ... A ) e. _V |
| 62 |
60 61
|
elmap |
|- ( ( ( coeff ` a ) |` ( 0 ... A ) ) e. ( ( -u A ... A ) ^m ( 0 ... A ) ) <-> ( ( coeff ` a ) |` ( 0 ... A ) ) : ( 0 ... A ) --> ( -u A ... A ) ) |
| 63 |
59 62
|
sylibr |
|- ( ( A e. NN0 /\ ( a e. ( Poly ` ZZ ) /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) -> ( ( coeff ` a ) |` ( 0 ... A ) ) e. ( ( -u A ... A ) ^m ( 0 ... A ) ) ) |
| 64 |
63
|
ex |
|- ( A e. NN0 -> ( ( a e. ( Poly ` ZZ ) /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) -> ( ( coeff ` a ) |` ( 0 ... A ) ) e. ( ( -u A ... A ) ^m ( 0 ... A ) ) ) ) |
| 65 |
31 64
|
syl5 |
|- ( A e. NN0 -> ( a e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } -> ( ( coeff ` a ) |` ( 0 ... A ) ) e. ( ( -u A ... A ) ^m ( 0 ... A ) ) ) ) |
| 66 |
|
simp2 |
|- ( ( a =/= 0p /\ ( deg ` a ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) -> ( deg ` a ) <_ A ) |
| 67 |
66
|
anim2i |
|- ( ( a e. ( Poly ` ZZ ) /\ ( a =/= 0p /\ ( deg ` a ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` a ) ` e ) ) <_ A ) ) -> ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) ) |
| 68 |
28 67
|
sylbi |
|- ( a e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } -> ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) ) |
| 69 |
|
neeq1 |
|- ( d = b -> ( d =/= 0p <-> b =/= 0p ) ) |
| 70 |
|
fveq2 |
|- ( d = b -> ( deg ` d ) = ( deg ` b ) ) |
| 71 |
70
|
breq1d |
|- ( d = b -> ( ( deg ` d ) <_ A <-> ( deg ` b ) <_ A ) ) |
| 72 |
|
fveq2 |
|- ( d = b -> ( coeff ` d ) = ( coeff ` b ) ) |
| 73 |
72
|
fveq1d |
|- ( d = b -> ( ( coeff ` d ) ` e ) = ( ( coeff ` b ) ` e ) ) |
| 74 |
73
|
fveq2d |
|- ( d = b -> ( abs ` ( ( coeff ` d ) ` e ) ) = ( abs ` ( ( coeff ` b ) ` e ) ) ) |
| 75 |
74
|
breq1d |
|- ( d = b -> ( ( abs ` ( ( coeff ` d ) ` e ) ) <_ A <-> ( abs ` ( ( coeff ` b ) ` e ) ) <_ A ) ) |
| 76 |
75
|
ralbidv |
|- ( d = b -> ( A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A <-> A. e e. NN0 ( abs ` ( ( coeff ` b ) ` e ) ) <_ A ) ) |
| 77 |
69 71 76
|
3anbi123d |
|- ( d = b -> ( ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) <-> ( b =/= 0p /\ ( deg ` b ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` b ) ` e ) ) <_ A ) ) ) |
| 78 |
77
|
elrab |
|- ( b e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } <-> ( b e. ( Poly ` ZZ ) /\ ( b =/= 0p /\ ( deg ` b ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` b ) ` e ) ) <_ A ) ) ) |
| 79 |
|
simp2 |
|- ( ( b =/= 0p /\ ( deg ` b ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` b ) ` e ) ) <_ A ) -> ( deg ` b ) <_ A ) |
| 80 |
79
|
anim2i |
|- ( ( b e. ( Poly ` ZZ ) /\ ( b =/= 0p /\ ( deg ` b ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` b ) ` e ) ) <_ A ) ) -> ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) |
| 81 |
78 80
|
sylbi |
|- ( b e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } -> ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) |
| 82 |
|
simplll |
|- ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) -> a e. ( Poly ` ZZ ) ) |
| 83 |
|
plyf |
|- ( a e. ( Poly ` ZZ ) -> a : CC --> CC ) |
| 84 |
|
ffn |
|- ( a : CC --> CC -> a Fn CC ) |
| 85 |
82 83 84
|
3syl |
|- ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) -> a Fn CC ) |
| 86 |
|
simplrl |
|- ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) -> b e. ( Poly ` ZZ ) ) |
| 87 |
|
plyf |
|- ( b e. ( Poly ` ZZ ) -> b : CC --> CC ) |
| 88 |
|
ffn |
|- ( b : CC --> CC -> b Fn CC ) |
| 89 |
86 87 88
|
3syl |
|- ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) -> b Fn CC ) |
| 90 |
|
simplrr |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) |
| 91 |
90
|
adantr |
|- ( ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) /\ d e. ( 0 ... A ) ) -> ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) |
| 92 |
91
|
fveq1d |
|- ( ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) /\ d e. ( 0 ... A ) ) -> ( ( ( coeff ` a ) |` ( 0 ... A ) ) ` d ) = ( ( ( coeff ` b ) |` ( 0 ... A ) ) ` d ) ) |
| 93 |
|
fvres |
|- ( d e. ( 0 ... A ) -> ( ( ( coeff ` a ) |` ( 0 ... A ) ) ` d ) = ( ( coeff ` a ) ` d ) ) |
| 94 |
93
|
adantl |
|- ( ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) /\ d e. ( 0 ... A ) ) -> ( ( ( coeff ` a ) |` ( 0 ... A ) ) ` d ) = ( ( coeff ` a ) ` d ) ) |
| 95 |
|
fvres |
|- ( d e. ( 0 ... A ) -> ( ( ( coeff ` b ) |` ( 0 ... A ) ) ` d ) = ( ( coeff ` b ) ` d ) ) |
| 96 |
95
|
adantl |
|- ( ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) /\ d e. ( 0 ... A ) ) -> ( ( ( coeff ` b ) |` ( 0 ... A ) ) ` d ) = ( ( coeff ` b ) ` d ) ) |
| 97 |
92 94 96
|
3eqtr3d |
|- ( ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) /\ d e. ( 0 ... A ) ) -> ( ( coeff ` a ) ` d ) = ( ( coeff ` b ) ` d ) ) |
| 98 |
97
|
oveq1d |
|- ( ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) /\ d e. ( 0 ... A ) ) -> ( ( ( coeff ` a ) ` d ) x. ( c ^ d ) ) = ( ( ( coeff ` b ) ` d ) x. ( c ^ d ) ) ) |
| 99 |
98
|
sumeq2dv |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> sum_ d e. ( 0 ... A ) ( ( ( coeff ` a ) ` d ) x. ( c ^ d ) ) = sum_ d e. ( 0 ... A ) ( ( ( coeff ` b ) ` d ) x. ( c ^ d ) ) ) |
| 100 |
|
simp-4l |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> a e. ( Poly ` ZZ ) ) |
| 101 |
|
simp-4r |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> ( deg ` a ) <_ A ) |
| 102 |
|
dgrcl |
|- ( a e. ( Poly ` ZZ ) -> ( deg ` a ) e. NN0 ) |
| 103 |
|
nn0z |
|- ( ( deg ` a ) e. NN0 -> ( deg ` a ) e. ZZ ) |
| 104 |
100 102 103
|
3syl |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> ( deg ` a ) e. ZZ ) |
| 105 |
|
simplrl |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> A e. NN0 ) |
| 106 |
105
|
nn0zd |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> A e. ZZ ) |
| 107 |
|
eluz |
|- ( ( ( deg ` a ) e. ZZ /\ A e. ZZ ) -> ( A e. ( ZZ>= ` ( deg ` a ) ) <-> ( deg ` a ) <_ A ) ) |
| 108 |
104 106 107
|
syl2anc |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> ( A e. ( ZZ>= ` ( deg ` a ) ) <-> ( deg ` a ) <_ A ) ) |
| 109 |
101 108
|
mpbird |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> A e. ( ZZ>= ` ( deg ` a ) ) ) |
| 110 |
|
simpr |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> c e. CC ) |
| 111 |
|
eqid |
|- ( deg ` a ) = ( deg ` a ) |
| 112 |
33 111
|
coeid3 |
|- ( ( a e. ( Poly ` ZZ ) /\ A e. ( ZZ>= ` ( deg ` a ) ) /\ c e. CC ) -> ( a ` c ) = sum_ d e. ( 0 ... A ) ( ( ( coeff ` a ) ` d ) x. ( c ^ d ) ) ) |
| 113 |
100 109 110 112
|
syl3anc |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> ( a ` c ) = sum_ d e. ( 0 ... A ) ( ( ( coeff ` a ) ` d ) x. ( c ^ d ) ) ) |
| 114 |
|
simp1rl |
|- ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) /\ c e. CC ) -> b e. ( Poly ` ZZ ) ) |
| 115 |
114
|
3expa |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> b e. ( Poly ` ZZ ) ) |
| 116 |
|
simplrr |
|- ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) -> ( deg ` b ) <_ A ) |
| 117 |
116
|
adantr |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> ( deg ` b ) <_ A ) |
| 118 |
|
dgrcl |
|- ( b e. ( Poly ` ZZ ) -> ( deg ` b ) e. NN0 ) |
| 119 |
|
nn0z |
|- ( ( deg ` b ) e. NN0 -> ( deg ` b ) e. ZZ ) |
| 120 |
115 118 119
|
3syl |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> ( deg ` b ) e. ZZ ) |
| 121 |
|
eluz |
|- ( ( ( deg ` b ) e. ZZ /\ A e. ZZ ) -> ( A e. ( ZZ>= ` ( deg ` b ) ) <-> ( deg ` b ) <_ A ) ) |
| 122 |
120 106 121
|
syl2anc |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> ( A e. ( ZZ>= ` ( deg ` b ) ) <-> ( deg ` b ) <_ A ) ) |
| 123 |
117 122
|
mpbird |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> A e. ( ZZ>= ` ( deg ` b ) ) ) |
| 124 |
|
eqid |
|- ( coeff ` b ) = ( coeff ` b ) |
| 125 |
|
eqid |
|- ( deg ` b ) = ( deg ` b ) |
| 126 |
124 125
|
coeid3 |
|- ( ( b e. ( Poly ` ZZ ) /\ A e. ( ZZ>= ` ( deg ` b ) ) /\ c e. CC ) -> ( b ` c ) = sum_ d e. ( 0 ... A ) ( ( ( coeff ` b ) ` d ) x. ( c ^ d ) ) ) |
| 127 |
115 123 110 126
|
syl3anc |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> ( b ` c ) = sum_ d e. ( 0 ... A ) ( ( ( coeff ` b ) ` d ) x. ( c ^ d ) ) ) |
| 128 |
99 113 127
|
3eqtr4d |
|- ( ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) /\ c e. CC ) -> ( a ` c ) = ( b ` c ) ) |
| 129 |
85 89 128
|
eqfnfvd |
|- ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ ( A e. NN0 /\ ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) ) -> a = b ) |
| 130 |
129
|
expr |
|- ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ A e. NN0 ) -> ( ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) -> a = b ) ) |
| 131 |
|
fveq2 |
|- ( a = b -> ( coeff ` a ) = ( coeff ` b ) ) |
| 132 |
131
|
reseq1d |
|- ( a = b -> ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) ) |
| 133 |
130 132
|
impbid1 |
|- ( ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) /\ A e. NN0 ) -> ( ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) <-> a = b ) ) |
| 134 |
133
|
expcom |
|- ( A e. NN0 -> ( ( ( a e. ( Poly ` ZZ ) /\ ( deg ` a ) <_ A ) /\ ( b e. ( Poly ` ZZ ) /\ ( deg ` b ) <_ A ) ) -> ( ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) <-> a = b ) ) ) |
| 135 |
68 81 134
|
syl2ani |
|- ( A e. NN0 -> ( ( a e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } /\ b e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } ) -> ( ( ( coeff ` a ) |` ( 0 ... A ) ) = ( ( coeff ` b ) |` ( 0 ... A ) ) <-> a = b ) ) ) |
| 136 |
65 135
|
dom2d |
|- ( A e. NN0 -> ( ( ( -u A ... A ) ^m ( 0 ... A ) ) e. _V -> { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } ~<_ ( ( -u A ... A ) ^m ( 0 ... A ) ) ) ) |
| 137 |
18 136
|
mpi |
|- ( A e. NN0 -> { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } ~<_ ( ( -u A ... A ) ^m ( 0 ... A ) ) ) |
| 138 |
|
domfi |
|- ( ( ( ( -u A ... A ) ^m ( 0 ... A ) ) e. Fin /\ { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } ~<_ ( ( -u A ... A ) ^m ( 0 ... A ) ) ) -> { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } e. Fin ) |
| 139 |
17 137 138
|
syl2anc |
|- ( A e. NN0 -> { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } e. Fin ) |
| 140 |
|
neeq1 |
|- ( d = c -> ( d =/= 0p <-> c =/= 0p ) ) |
| 141 |
|
fveq2 |
|- ( d = c -> ( deg ` d ) = ( deg ` c ) ) |
| 142 |
141
|
breq1d |
|- ( d = c -> ( ( deg ` d ) <_ A <-> ( deg ` c ) <_ A ) ) |
| 143 |
|
fveq2 |
|- ( d = c -> ( coeff ` d ) = ( coeff ` c ) ) |
| 144 |
143
|
fveq1d |
|- ( d = c -> ( ( coeff ` d ) ` e ) = ( ( coeff ` c ) ` e ) ) |
| 145 |
144
|
fveq2d |
|- ( d = c -> ( abs ` ( ( coeff ` d ) ` e ) ) = ( abs ` ( ( coeff ` c ) ` e ) ) ) |
| 146 |
145
|
breq1d |
|- ( d = c -> ( ( abs ` ( ( coeff ` d ) ` e ) ) <_ A <-> ( abs ` ( ( coeff ` c ) ` e ) ) <_ A ) ) |
| 147 |
146
|
ralbidv |
|- ( d = c -> ( A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A <-> A. e e. NN0 ( abs ` ( ( coeff ` c ) ` e ) ) <_ A ) ) |
| 148 |
140 142 147
|
3anbi123d |
|- ( d = c -> ( ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) <-> ( c =/= 0p /\ ( deg ` c ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` c ) ` e ) ) <_ A ) ) ) |
| 149 |
148
|
elrab |
|- ( c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } <-> ( c e. ( Poly ` ZZ ) /\ ( c =/= 0p /\ ( deg ` c ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` c ) ` e ) ) <_ A ) ) ) |
| 150 |
|
simp1 |
|- ( ( c =/= 0p /\ ( deg ` c ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` c ) ` e ) ) <_ A ) -> c =/= 0p ) |
| 151 |
150
|
anim2i |
|- ( ( c e. ( Poly ` ZZ ) /\ ( c =/= 0p /\ ( deg ` c ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` c ) ` e ) ) <_ A ) ) -> ( c e. ( Poly ` ZZ ) /\ c =/= 0p ) ) |
| 152 |
149 151
|
sylbi |
|- ( c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } -> ( c e. ( Poly ` ZZ ) /\ c =/= 0p ) ) |
| 153 |
|
fveqeq2 |
|- ( b = a -> ( ( c ` b ) = 0 <-> ( c ` a ) = 0 ) ) |
| 154 |
153
|
elrab |
|- ( a e. { b e. CC | ( c ` b ) = 0 } <-> ( a e. CC /\ ( c ` a ) = 0 ) ) |
| 155 |
|
plyf |
|- ( c e. ( Poly ` ZZ ) -> c : CC --> CC ) |
| 156 |
155
|
ffnd |
|- ( c e. ( Poly ` ZZ ) -> c Fn CC ) |
| 157 |
156
|
adantr |
|- ( ( c e. ( Poly ` ZZ ) /\ c =/= 0p ) -> c Fn CC ) |
| 158 |
|
fniniseg |
|- ( c Fn CC -> ( a e. ( `' c " { 0 } ) <-> ( a e. CC /\ ( c ` a ) = 0 ) ) ) |
| 159 |
157 158
|
syl |
|- ( ( c e. ( Poly ` ZZ ) /\ c =/= 0p ) -> ( a e. ( `' c " { 0 } ) <-> ( a e. CC /\ ( c ` a ) = 0 ) ) ) |
| 160 |
154 159
|
bitr4id |
|- ( ( c e. ( Poly ` ZZ ) /\ c =/= 0p ) -> ( a e. { b e. CC | ( c ` b ) = 0 } <-> a e. ( `' c " { 0 } ) ) ) |
| 161 |
160
|
eqrdv |
|- ( ( c e. ( Poly ` ZZ ) /\ c =/= 0p ) -> { b e. CC | ( c ` b ) = 0 } = ( `' c " { 0 } ) ) |
| 162 |
|
eqid |
|- ( `' c " { 0 } ) = ( `' c " { 0 } ) |
| 163 |
162
|
fta1 |
|- ( ( c e. ( Poly ` ZZ ) /\ c =/= 0p ) -> ( ( `' c " { 0 } ) e. Fin /\ ( # ` ( `' c " { 0 } ) ) <_ ( deg ` c ) ) ) |
| 164 |
163
|
simpld |
|- ( ( c e. ( Poly ` ZZ ) /\ c =/= 0p ) -> ( `' c " { 0 } ) e. Fin ) |
| 165 |
161 164
|
eqeltrd |
|- ( ( c e. ( Poly ` ZZ ) /\ c =/= 0p ) -> { b e. CC | ( c ` b ) = 0 } e. Fin ) |
| 166 |
165
|
a1i |
|- ( A e. NN0 -> ( ( c e. ( Poly ` ZZ ) /\ c =/= 0p ) -> { b e. CC | ( c ` b ) = 0 } e. Fin ) ) |
| 167 |
152 166
|
syl5 |
|- ( A e. NN0 -> ( c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } -> { b e. CC | ( c ` b ) = 0 } e. Fin ) ) |
| 168 |
167
|
ralrimiv |
|- ( A e. NN0 -> A. c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } { b e. CC | ( c ` b ) = 0 } e. Fin ) |
| 169 |
|
iunfi |
|- ( ( { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } e. Fin /\ A. c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } { b e. CC | ( c ` b ) = 0 } e. Fin ) -> U_ c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } { b e. CC | ( c ` b ) = 0 } e. Fin ) |
| 170 |
139 168 169
|
syl2anc |
|- ( A e. NN0 -> U_ c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } { b e. CC | ( c ` b ) = 0 } e. Fin ) |
| 171 |
12 170
|
eqeltrrid |
|- ( A e. NN0 -> { b e. CC | E. c e. { d e. ( Poly ` ZZ ) | ( d =/= 0p /\ ( deg ` d ) <_ A /\ A. e e. NN0 ( abs ` ( ( coeff ` d ) ` e ) ) <_ A ) } ( c ` b ) = 0 } e. Fin ) |
| 172 |
11 171
|
eqeltrd |
|- ( A e. NN0 -> ( H ` A ) e. Fin ) |