Metamath Proof Explorer


Theorem aaliou3lem5

Description: Lemma for aaliou3 . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypotheses aaliou3lem.c F=a2a!
aaliou3lem.d L=bFb
aaliou3lem.e H=cb=1cFb
Assertion aaliou3lem5 AHA

Proof

Step Hyp Ref Expression
1 aaliou3lem.c F=a2a!
2 aaliou3lem.d L=bFb
3 aaliou3lem.e H=cb=1cFb
4 oveq2 c=A1c=1A
5 4 sumeq1d c=Ab=1cFb=b=1AFb
6 sumex b=1AFbV
7 5 3 6 fvmpt AHA=b=1AFb
8 fzfid A1AFin
9 elfznn b1Ab
10 9 adantl Ab1Ab
11 fveq2 a=ba!=b!
12 11 negeqd a=ba!=b!
13 12 oveq2d a=b2a!=2b!
14 ovex 2b!V
15 13 1 14 fvmpt bFb=2b!
16 2rp 2+
17 nnnn0 bb0
18 17 faccld bb!
19 18 nnzd bb!
20 19 znegcld bb!
21 rpexpcl 2+b!2b!+
22 16 20 21 sylancr b2b!+
23 22 rpred b2b!
24 15 23 eqeltrd bFb
25 10 24 syl Ab1AFb
26 8 25 fsumrecl Ab=1AFb
27 7 26 eqeltrd AHA