Description: Lemma for aaliou3 . (Contributed by Stefan O'Rear, 16-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | aaliou3lem.c | |
|
aaliou3lem.d | |
||
aaliou3lem.e | |
||
Assertion | aaliou3lem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aaliou3lem.c | |
|
2 | aaliou3lem.d | |
|
3 | aaliou3lem.e | |
|
4 | oveq2 | |
|
5 | 4 | sumeq1d | |
6 | sumex | |
|
7 | 5 3 6 | fvmpt | |
8 | fzfid | |
|
9 | elfznn | |
|
10 | 9 | adantl | |
11 | fveq2 | |
|
12 | 11 | negeqd | |
13 | 12 | oveq2d | |
14 | ovex | |
|
15 | 13 1 14 | fvmpt | |
16 | 2rp | |
|
17 | nnnn0 | |
|
18 | 17 | faccld | |
19 | 18 | nnzd | |
20 | 19 | znegcld | |
21 | rpexpcl | |
|
22 | 16 20 21 | sylancr | |
23 | 22 | rpred | |
24 | 15 23 | eqeltrd | |
25 | 10 24 | syl | |
26 | 8 25 | fsumrecl | |
27 | 7 26 | eqeltrd | |