Metamath Proof Explorer


Theorem ablfac1a

Description: The factors of ablfac1b are of prime power order. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses ablfac1.b B=BaseG
ablfac1.o O=odG
ablfac1.s S=pAxB|OxpppCntB
ablfac1.g φGAbel
ablfac1.f φBFin
ablfac1.1 φA
Assertion ablfac1a φPASP=PPpCntB

Proof

Step Hyp Ref Expression
1 ablfac1.b B=BaseG
2 ablfac1.o O=odG
3 ablfac1.s S=pAxB|OxpppCntB
4 ablfac1.g φGAbel
5 ablfac1.f φBFin
6 ablfac1.1 φA
7 id p=Pp=P
8 oveq1 p=PppCntB=PpCntB
9 7 8 oveq12d p=PpppCntB=PPpCntB
10 9 breq2d p=POxpppCntBOxPPpCntB
11 10 rabbidv p=PxB|OxpppCntB=xB|OxPPpCntB
12 1 fvexi BV
13 12 rabex xB|OxpppCntBV
14 11 3 13 fvmpt3i PASP=xB|OxPPpCntB
15 14 adantl φPASP=xB|OxPPpCntB
16 15 fveq2d φPASP=xB|OxPPpCntB
17 eqid xB|OxPPpCntB=xB|OxPPpCntB
18 eqid xB|OxBPPpCntB=xB|OxBPPpCntB
19 4 adantr φPAGAbel
20 eqid PPpCntB=PPpCntB
21 eqid BPPpCntB=BPPpCntB
22 1 2 3 4 5 6 20 21 ablfac1lem φPAPPpCntBBPPpCntBPPpCntBgcdBPPpCntB=1B=PPpCntBBPPpCntB
23 22 simp1d φPAPPpCntBBPPpCntB
24 23 simpld φPAPPpCntB
25 23 simprd φPABPPpCntB
26 22 simp2d φPAPPpCntBgcdBPPpCntB=1
27 22 simp3d φPAB=PPpCntBBPPpCntB
28 1 2 17 18 19 24 25 26 27 ablfacrp2 φPAxB|OxPPpCntB=PPpCntBxB|OxBPPpCntB=BPPpCntB
29 28 simpld φPAxB|OxPPpCntB=PPpCntB
30 16 29 eqtrd φPASP=PPpCntB