Metamath Proof Explorer


Theorem ablfacrp2

Description: The factors K , L of ablfacrp have the expected orders (which allows for repeated application to decompose G into subgroups of prime-power order). Lemma 6.1C.2 of Shapiro, p. 199. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses ablfacrp.b B=BaseG
ablfacrp.o O=odG
ablfacrp.k K=xB|OxM
ablfacrp.l L=xB|OxN
ablfacrp.g φGAbel
ablfacrp.m φM
ablfacrp.n φN
ablfacrp.1 φMgcdN=1
ablfacrp.2 φB= M N
Assertion ablfacrp2 φK=ML=N

Proof

Step Hyp Ref Expression
1 ablfacrp.b B=BaseG
2 ablfacrp.o O=odG
3 ablfacrp.k K=xB|OxM
4 ablfacrp.l L=xB|OxN
5 ablfacrp.g φGAbel
6 ablfacrp.m φM
7 ablfacrp.n φN
8 ablfacrp.1 φMgcdN=1
9 ablfacrp.2 φB= M N
10 6 nnnn0d φM0
11 7 nnnn0d φN0
12 10 11 nn0mulcld φ M N0
13 9 12 eqeltrd φB0
14 1 fvexi BV
15 hashclb BVBFinB0
16 14 15 ax-mp BFinB0
17 13 16 sylibr φBFin
18 3 ssrab3 KB
19 ssfi BFinKBKFin
20 17 18 19 sylancl φKFin
21 hashcl KFinK0
22 20 21 syl φK0
23 6 nnzd φM
24 2 1 oddvdssubg GAbelMxB|OxMSubGrpG
25 5 23 24 syl2anc φxB|OxMSubGrpG
26 3 25 eqeltrid φKSubGrpG
27 1 lagsubg KSubGrpGBFinKB
28 26 17 27 syl2anc φKB
29 6 nncnd φM
30 7 nncnd φN
31 29 30 mulcomd φ M N= N M
32 9 31 eqtrd φB= N M
33 28 32 breqtrd φK N M
34 1 2 3 4 5 6 7 8 9 ablfacrplem φKgcdN=1
35 22 nn0zd φK
36 7 nnzd φN
37 coprmdvds KNMK N MKgcdN=1KM
38 35 36 23 37 syl3anc φK N MKgcdN=1KM
39 33 34 38 mp2and φKM
40 2 1 oddvdssubg GAbelNxB|OxNSubGrpG
41 5 36 40 syl2anc φxB|OxNSubGrpG
42 4 41 eqeltrid φLSubGrpG
43 1 lagsubg LSubGrpGBFinLB
44 42 17 43 syl2anc φLB
45 44 9 breqtrd φL M N
46 23 36 gcdcomd φMgcdN=NgcdM
47 46 8 eqtr3d φNgcdM=1
48 1 2 4 3 5 7 6 47 32 ablfacrplem φLgcdM=1
49 4 ssrab3 LB
50 ssfi BFinLBLFin
51 17 49 50 sylancl φLFin
52 hashcl LFinL0
53 51 52 syl φL0
54 53 nn0zd φL
55 coprmdvds LMNL M NLgcdM=1LN
56 54 23 36 55 syl3anc φL M NLgcdM=1LN
57 45 48 56 mp2and φLN
58 dvdscmul LNMLNML M N
59 54 36 23 58 syl3anc φLNML M N
60 57 59 mpd φML M N
61 eqid 0G=0G
62 eqid LSSumG=LSSumG
63 1 2 3 4 5 6 7 8 9 61 62 ablfacrp φKL=0GKLSSumGL=B
64 63 simprd φKLSSumGL=B
65 64 fveq2d φKLSSumGL=B
66 eqid CntzG=CntzG
67 63 simpld φKL=0G
68 66 5 26 42 ablcntzd φKCntzGL
69 62 61 66 26 42 67 68 20 51 lsmhash φKLSSumGL=KL
70 65 69 eqtr3d φB=KL
71 70 9 eqtr3d φKL= M N
72 60 71 breqtrrd φMLKL
73 61 subg0cl LSubGrpG0GL
74 ne0i 0GLL
75 42 73 74 3syl φL
76 hashnncl LFinLL
77 51 76 syl φLL
78 75 77 mpbird φL
79 78 nnne0d φL0
80 dvdsmulcr MKLL0MLKLMK
81 23 35 54 79 80 syl112anc φMLKLMK
82 72 81 mpbid φMK
83 dvdseq K0M0KMMKK=M
84 22 10 39 82 83 syl22anc φK=M
85 dvdsmulc KMNKMK N M N
86 35 23 36 85 syl3anc φKMK N M N
87 39 86 mpd φK N M N
88 87 71 breqtrrd φK NKL
89 84 6 eqeltrd φK
90 89 nnne0d φK0
91 dvdscmulr NLKK0K NKLNL
92 36 54 35 90 91 syl112anc φK NKLNL
93 88 92 mpbid φNL
94 dvdseq L0N0LNNLL=N
95 53 11 57 93 94 syl22anc φL=N
96 84 95 jca φK=ML=N