| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablfacrp.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
ablfacrp.o |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
| 3 |
|
ablfacrp.k |
⊢ 𝐾 = { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑀 } |
| 4 |
|
ablfacrp.l |
⊢ 𝐿 = { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } |
| 5 |
|
ablfacrp.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
| 6 |
|
ablfacrp.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 7 |
|
ablfacrp.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 8 |
|
ablfacrp.1 |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) = 1 ) |
| 9 |
|
ablfacrp.2 |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = ( 𝑀 · 𝑁 ) ) |
| 10 |
6
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 11 |
7
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 12 |
10 11
|
nn0mulcld |
⊢ ( 𝜑 → ( 𝑀 · 𝑁 ) ∈ ℕ0 ) |
| 13 |
9 12
|
eqeltrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 14 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 15 |
|
hashclb |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ Fin ↔ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) ) |
| 16 |
14 15
|
ax-mp |
⊢ ( 𝐵 ∈ Fin ↔ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 17 |
13 16
|
sylibr |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 18 |
3
|
ssrab3 |
⊢ 𝐾 ⊆ 𝐵 |
| 19 |
|
ssfi |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐾 ⊆ 𝐵 ) → 𝐾 ∈ Fin ) |
| 20 |
17 18 19
|
sylancl |
⊢ ( 𝜑 → 𝐾 ∈ Fin ) |
| 21 |
|
hashcl |
⊢ ( 𝐾 ∈ Fin → ( ♯ ‘ 𝐾 ) ∈ ℕ0 ) |
| 22 |
20 21
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ∈ ℕ0 ) |
| 23 |
6
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 24 |
2 1
|
oddvdssubg |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑀 } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 25 |
5 23 24
|
syl2anc |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑀 } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 26 |
3 25
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 27 |
1
|
lagsubg |
⊢ ( ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐾 ) ∥ ( ♯ ‘ 𝐵 ) ) |
| 28 |
26 17 27
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ∥ ( ♯ ‘ 𝐵 ) ) |
| 29 |
6
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 30 |
7
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 31 |
29 30
|
mulcomd |
⊢ ( 𝜑 → ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑀 ) ) |
| 32 |
9 31
|
eqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = ( 𝑁 · 𝑀 ) ) |
| 33 |
28 32
|
breqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ∥ ( 𝑁 · 𝑀 ) ) |
| 34 |
1 2 3 4 5 6 7 8 9
|
ablfacrplem |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) = 1 ) |
| 35 |
22
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ∈ ℤ ) |
| 36 |
7
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 37 |
|
coprmdvds |
⊢ ( ( ( ♯ ‘ 𝐾 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ( ♯ ‘ 𝐾 ) ∥ ( 𝑁 · 𝑀 ) ∧ ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) = 1 ) → ( ♯ ‘ 𝐾 ) ∥ 𝑀 ) ) |
| 38 |
35 36 23 37
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐾 ) ∥ ( 𝑁 · 𝑀 ) ∧ ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) = 1 ) → ( ♯ ‘ 𝐾 ) ∥ 𝑀 ) ) |
| 39 |
33 34 38
|
mp2and |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ∥ 𝑀 ) |
| 40 |
2 1
|
oddvdssubg |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 41 |
5 36 40
|
syl2anc |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 42 |
4 41
|
eqeltrid |
⊢ ( 𝜑 → 𝐿 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 43 |
1
|
lagsubg |
⊢ ( ( 𝐿 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐿 ) ∥ ( ♯ ‘ 𝐵 ) ) |
| 44 |
42 17 43
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ 𝐿 ) ∥ ( ♯ ‘ 𝐵 ) ) |
| 45 |
44 9
|
breqtrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐿 ) ∥ ( 𝑀 · 𝑁 ) ) |
| 46 |
23 36
|
gcdcomd |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) = ( 𝑁 gcd 𝑀 ) ) |
| 47 |
46 8
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑁 gcd 𝑀 ) = 1 ) |
| 48 |
1 2 4 3 5 7 6 47 32
|
ablfacrplem |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐿 ) gcd 𝑀 ) = 1 ) |
| 49 |
4
|
ssrab3 |
⊢ 𝐿 ⊆ 𝐵 |
| 50 |
|
ssfi |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐿 ⊆ 𝐵 ) → 𝐿 ∈ Fin ) |
| 51 |
17 49 50
|
sylancl |
⊢ ( 𝜑 → 𝐿 ∈ Fin ) |
| 52 |
|
hashcl |
⊢ ( 𝐿 ∈ Fin → ( ♯ ‘ 𝐿 ) ∈ ℕ0 ) |
| 53 |
51 52
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐿 ) ∈ ℕ0 ) |
| 54 |
53
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐿 ) ∈ ℤ ) |
| 55 |
|
coprmdvds |
⊢ ( ( ( ♯ ‘ 𝐿 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( ♯ ‘ 𝐿 ) ∥ ( 𝑀 · 𝑁 ) ∧ ( ( ♯ ‘ 𝐿 ) gcd 𝑀 ) = 1 ) → ( ♯ ‘ 𝐿 ) ∥ 𝑁 ) ) |
| 56 |
54 23 36 55
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐿 ) ∥ ( 𝑀 · 𝑁 ) ∧ ( ( ♯ ‘ 𝐿 ) gcd 𝑀 ) = 1 ) → ( ♯ ‘ 𝐿 ) ∥ 𝑁 ) ) |
| 57 |
45 48 56
|
mp2and |
⊢ ( 𝜑 → ( ♯ ‘ 𝐿 ) ∥ 𝑁 ) |
| 58 |
|
dvdscmul |
⊢ ( ( ( ♯ ‘ 𝐿 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ♯ ‘ 𝐿 ) ∥ 𝑁 → ( 𝑀 · ( ♯ ‘ 𝐿 ) ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 59 |
54 36 23 58
|
syl3anc |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐿 ) ∥ 𝑁 → ( 𝑀 · ( ♯ ‘ 𝐿 ) ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 60 |
57 59
|
mpd |
⊢ ( 𝜑 → ( 𝑀 · ( ♯ ‘ 𝐿 ) ) ∥ ( 𝑀 · 𝑁 ) ) |
| 61 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 62 |
|
eqid |
⊢ ( LSSum ‘ 𝐺 ) = ( LSSum ‘ 𝐺 ) |
| 63 |
1 2 3 4 5 6 7 8 9 61 62
|
ablfacrp |
⊢ ( 𝜑 → ( ( 𝐾 ∩ 𝐿 ) = { ( 0g ‘ 𝐺 ) } ∧ ( 𝐾 ( LSSum ‘ 𝐺 ) 𝐿 ) = 𝐵 ) ) |
| 64 |
63
|
simprd |
⊢ ( 𝜑 → ( 𝐾 ( LSSum ‘ 𝐺 ) 𝐿 ) = 𝐵 ) |
| 65 |
64
|
fveq2d |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐾 ( LSSum ‘ 𝐺 ) 𝐿 ) ) = ( ♯ ‘ 𝐵 ) ) |
| 66 |
|
eqid |
⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) |
| 67 |
63
|
simpld |
⊢ ( 𝜑 → ( 𝐾 ∩ 𝐿 ) = { ( 0g ‘ 𝐺 ) } ) |
| 68 |
66 5 26 42
|
ablcntzd |
⊢ ( 𝜑 → 𝐾 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ 𝐿 ) ) |
| 69 |
62 61 66 26 42 67 68 20 51
|
lsmhash |
⊢ ( 𝜑 → ( ♯ ‘ ( 𝐾 ( LSSum ‘ 𝐺 ) 𝐿 ) ) = ( ( ♯ ‘ 𝐾 ) · ( ♯ ‘ 𝐿 ) ) ) |
| 70 |
65 69
|
eqtr3d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = ( ( ♯ ‘ 𝐾 ) · ( ♯ ‘ 𝐿 ) ) ) |
| 71 |
70 9
|
eqtr3d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐾 ) · ( ♯ ‘ 𝐿 ) ) = ( 𝑀 · 𝑁 ) ) |
| 72 |
60 71
|
breqtrrd |
⊢ ( 𝜑 → ( 𝑀 · ( ♯ ‘ 𝐿 ) ) ∥ ( ( ♯ ‘ 𝐾 ) · ( ♯ ‘ 𝐿 ) ) ) |
| 73 |
61
|
subg0cl |
⊢ ( 𝐿 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝐿 ) |
| 74 |
|
ne0i |
⊢ ( ( 0g ‘ 𝐺 ) ∈ 𝐿 → 𝐿 ≠ ∅ ) |
| 75 |
42 73 74
|
3syl |
⊢ ( 𝜑 → 𝐿 ≠ ∅ ) |
| 76 |
|
hashnncl |
⊢ ( 𝐿 ∈ Fin → ( ( ♯ ‘ 𝐿 ) ∈ ℕ ↔ 𝐿 ≠ ∅ ) ) |
| 77 |
51 76
|
syl |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐿 ) ∈ ℕ ↔ 𝐿 ≠ ∅ ) ) |
| 78 |
75 77
|
mpbird |
⊢ ( 𝜑 → ( ♯ ‘ 𝐿 ) ∈ ℕ ) |
| 79 |
78
|
nnne0d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐿 ) ≠ 0 ) |
| 80 |
|
dvdsmulcr |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( ♯ ‘ 𝐾 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐿 ) ∈ ℤ ∧ ( ♯ ‘ 𝐿 ) ≠ 0 ) ) → ( ( 𝑀 · ( ♯ ‘ 𝐿 ) ) ∥ ( ( ♯ ‘ 𝐾 ) · ( ♯ ‘ 𝐿 ) ) ↔ 𝑀 ∥ ( ♯ ‘ 𝐾 ) ) ) |
| 81 |
23 35 54 79 80
|
syl112anc |
⊢ ( 𝜑 → ( ( 𝑀 · ( ♯ ‘ 𝐿 ) ) ∥ ( ( ♯ ‘ 𝐾 ) · ( ♯ ‘ 𝐿 ) ) ↔ 𝑀 ∥ ( ♯ ‘ 𝐾 ) ) ) |
| 82 |
72 81
|
mpbid |
⊢ ( 𝜑 → 𝑀 ∥ ( ♯ ‘ 𝐾 ) ) |
| 83 |
|
dvdseq |
⊢ ( ( ( ( ♯ ‘ 𝐾 ) ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ) ∧ ( ( ♯ ‘ 𝐾 ) ∥ 𝑀 ∧ 𝑀 ∥ ( ♯ ‘ 𝐾 ) ) ) → ( ♯ ‘ 𝐾 ) = 𝑀 ) |
| 84 |
22 10 39 82 83
|
syl22anc |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) = 𝑀 ) |
| 85 |
|
dvdsmulc |
⊢ ( ( ( ♯ ‘ 𝐾 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ♯ ‘ 𝐾 ) ∥ 𝑀 → ( ( ♯ ‘ 𝐾 ) · 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 86 |
35 23 36 85
|
syl3anc |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐾 ) ∥ 𝑀 → ( ( ♯ ‘ 𝐾 ) · 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) ) |
| 87 |
39 86
|
mpd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐾 ) · 𝑁 ) ∥ ( 𝑀 · 𝑁 ) ) |
| 88 |
87 71
|
breqtrrd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐾 ) · 𝑁 ) ∥ ( ( ♯ ‘ 𝐾 ) · ( ♯ ‘ 𝐿 ) ) ) |
| 89 |
84 6
|
eqeltrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ∈ ℕ ) |
| 90 |
89
|
nnne0d |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ≠ 0 ) |
| 91 |
|
dvdscmulr |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( ♯ ‘ 𝐿 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐾 ) ∈ ℤ ∧ ( ♯ ‘ 𝐾 ) ≠ 0 ) ) → ( ( ( ♯ ‘ 𝐾 ) · 𝑁 ) ∥ ( ( ♯ ‘ 𝐾 ) · ( ♯ ‘ 𝐿 ) ) ↔ 𝑁 ∥ ( ♯ ‘ 𝐿 ) ) ) |
| 92 |
36 54 35 90 91
|
syl112anc |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐾 ) · 𝑁 ) ∥ ( ( ♯ ‘ 𝐾 ) · ( ♯ ‘ 𝐿 ) ) ↔ 𝑁 ∥ ( ♯ ‘ 𝐿 ) ) ) |
| 93 |
88 92
|
mpbid |
⊢ ( 𝜑 → 𝑁 ∥ ( ♯ ‘ 𝐿 ) ) |
| 94 |
|
dvdseq |
⊢ ( ( ( ( ♯ ‘ 𝐿 ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( ( ♯ ‘ 𝐿 ) ∥ 𝑁 ∧ 𝑁 ∥ ( ♯ ‘ 𝐿 ) ) ) → ( ♯ ‘ 𝐿 ) = 𝑁 ) |
| 95 |
53 11 57 93 94
|
syl22anc |
⊢ ( 𝜑 → ( ♯ ‘ 𝐿 ) = 𝑁 ) |
| 96 |
84 95
|
jca |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐾 ) = 𝑀 ∧ ( ♯ ‘ 𝐿 ) = 𝑁 ) ) |