Step |
Hyp |
Ref |
Expression |
1 |
|
ablfacrp.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
ablfacrp.o |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
3 |
|
ablfacrp.k |
⊢ 𝐾 = { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑀 } |
4 |
|
ablfacrp.l |
⊢ 𝐿 = { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } |
5 |
|
ablfacrp.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
6 |
|
ablfacrp.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
7 |
|
ablfacrp.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
8 |
|
ablfacrp.1 |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) = 1 ) |
9 |
|
ablfacrp.2 |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = ( 𝑀 · 𝑁 ) ) |
10 |
|
nprmdvds1 |
⊢ ( 𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1 ) |
11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ¬ 𝑝 ∥ 1 ) |
12 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑀 gcd 𝑁 ) = 1 ) |
13 |
12
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝑀 gcd 𝑁 ) ↔ 𝑝 ∥ 1 ) ) |
14 |
11 13
|
mtbird |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ¬ 𝑝 ∥ ( 𝑀 gcd 𝑁 ) ) |
15 |
6
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
16 |
2 1
|
oddvdssubg |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑀 } ∈ ( SubGrp ‘ 𝐺 ) ) |
17 |
5 15 16
|
syl2anc |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑀 } ∈ ( SubGrp ‘ 𝐺 ) ) |
18 |
3 17
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
20 |
|
eqid |
⊢ ( 𝐺 ↾s 𝐾 ) = ( 𝐺 ↾s 𝐾 ) |
21 |
20
|
subggrp |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ↾s 𝐾 ) ∈ Grp ) |
22 |
19 21
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) → ( 𝐺 ↾s 𝐾 ) ∈ Grp ) |
23 |
20
|
subgbas |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → 𝐾 = ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ) |
24 |
19 23
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) → 𝐾 = ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ) |
25 |
6
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
26 |
7
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
27 |
25 26
|
nn0mulcld |
⊢ ( 𝜑 → ( 𝑀 · 𝑁 ) ∈ ℕ0 ) |
28 |
9 27
|
eqeltrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
29 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
30 |
|
hashclb |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ Fin ↔ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) ) |
31 |
29 30
|
ax-mp |
⊢ ( 𝐵 ∈ Fin ↔ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
32 |
28 31
|
sylibr |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
33 |
3
|
ssrab3 |
⊢ 𝐾 ⊆ 𝐵 |
34 |
|
ssfi |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐾 ⊆ 𝐵 ) → 𝐾 ∈ Fin ) |
35 |
32 33 34
|
sylancl |
⊢ ( 𝜑 → 𝐾 ∈ Fin ) |
36 |
35
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) → 𝐾 ∈ Fin ) |
37 |
24 36
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) → ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ∈ Fin ) |
38 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) → 𝑝 ∈ ℙ ) |
39 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) → 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) |
40 |
24
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) → ( ♯ ‘ 𝐾 ) = ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ) ) |
41 |
39 40
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) → 𝑝 ∥ ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ) ) |
42 |
|
eqid |
⊢ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) = ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) |
43 |
|
eqid |
⊢ ( od ‘ ( 𝐺 ↾s 𝐾 ) ) = ( od ‘ ( 𝐺 ↾s 𝐾 ) ) |
44 |
42 43
|
odcau |
⊢ ( ( ( ( 𝐺 ↾s 𝐾 ) ∈ Grp ∧ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ∈ Fin ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ) ) → ∃ 𝑔 ∈ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ( ( od ‘ ( 𝐺 ↾s 𝐾 ) ) ‘ 𝑔 ) = 𝑝 ) |
45 |
22 37 38 41 44
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) → ∃ 𝑔 ∈ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ( ( od ‘ ( 𝐺 ↾s 𝐾 ) ) ‘ 𝑔 ) = 𝑝 ) |
46 |
24
|
rexeqdv |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) → ( ∃ 𝑔 ∈ 𝐾 ( ( od ‘ ( 𝐺 ↾s 𝐾 ) ) ‘ 𝑔 ) = 𝑝 ↔ ∃ 𝑔 ∈ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ( ( od ‘ ( 𝐺 ↾s 𝐾 ) ) ‘ 𝑔 ) = 𝑝 ) ) |
47 |
45 46
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) → ∃ 𝑔 ∈ 𝐾 ( ( od ‘ ( 𝐺 ↾s 𝐾 ) ) ‘ 𝑔 ) = 𝑝 ) |
48 |
20 2 43
|
subgod |
⊢ ( ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑔 ∈ 𝐾 ) → ( 𝑂 ‘ 𝑔 ) = ( ( od ‘ ( 𝐺 ↾s 𝐾 ) ) ‘ 𝑔 ) ) |
49 |
19 48
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) ∧ 𝑔 ∈ 𝐾 ) → ( 𝑂 ‘ 𝑔 ) = ( ( od ‘ ( 𝐺 ↾s 𝐾 ) ) ‘ 𝑔 ) ) |
50 |
|
fveq2 |
⊢ ( 𝑥 = 𝑔 → ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝑔 ) ) |
51 |
50
|
breq1d |
⊢ ( 𝑥 = 𝑔 → ( ( 𝑂 ‘ 𝑥 ) ∥ 𝑀 ↔ ( 𝑂 ‘ 𝑔 ) ∥ 𝑀 ) ) |
52 |
51 3
|
elrab2 |
⊢ ( 𝑔 ∈ 𝐾 ↔ ( 𝑔 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑔 ) ∥ 𝑀 ) ) |
53 |
52
|
simprbi |
⊢ ( 𝑔 ∈ 𝐾 → ( 𝑂 ‘ 𝑔 ) ∥ 𝑀 ) |
54 |
53
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) ∧ 𝑔 ∈ 𝐾 ) → ( 𝑂 ‘ 𝑔 ) ∥ 𝑀 ) |
55 |
49 54
|
eqbrtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) ∧ 𝑔 ∈ 𝐾 ) → ( ( od ‘ ( 𝐺 ↾s 𝐾 ) ) ‘ 𝑔 ) ∥ 𝑀 ) |
56 |
|
breq1 |
⊢ ( ( ( od ‘ ( 𝐺 ↾s 𝐾 ) ) ‘ 𝑔 ) = 𝑝 → ( ( ( od ‘ ( 𝐺 ↾s 𝐾 ) ) ‘ 𝑔 ) ∥ 𝑀 ↔ 𝑝 ∥ 𝑀 ) ) |
57 |
55 56
|
syl5ibcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) ∧ 𝑔 ∈ 𝐾 ) → ( ( ( od ‘ ( 𝐺 ↾s 𝐾 ) ) ‘ 𝑔 ) = 𝑝 → 𝑝 ∥ 𝑀 ) ) |
58 |
57
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) → ( ∃ 𝑔 ∈ 𝐾 ( ( od ‘ ( 𝐺 ↾s 𝐾 ) ) ‘ 𝑔 ) = 𝑝 → 𝑝 ∥ 𝑀 ) ) |
59 |
47 58
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) → 𝑝 ∥ 𝑀 ) |
60 |
59
|
ex |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( ♯ ‘ 𝐾 ) → 𝑝 ∥ 𝑀 ) ) |
61 |
60
|
anim1d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ ( ♯ ‘ 𝐾 ) ∧ 𝑝 ∥ 𝑁 ) → ( 𝑝 ∥ 𝑀 ∧ 𝑝 ∥ 𝑁 ) ) ) |
62 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
63 |
62
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℤ ) |
64 |
|
hashcl |
⊢ ( 𝐾 ∈ Fin → ( ♯ ‘ 𝐾 ) ∈ ℕ0 ) |
65 |
35 64
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ∈ ℕ0 ) |
66 |
65
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ∈ ℤ ) |
67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ♯ ‘ 𝐾 ) ∈ ℤ ) |
68 |
7
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
69 |
68
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 𝑁 ∈ ℤ ) |
70 |
|
dvdsgcdb |
⊢ ( ( 𝑝 ∈ ℤ ∧ ( ♯ ‘ 𝐾 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑝 ∥ ( ♯ ‘ 𝐾 ) ∧ 𝑝 ∥ 𝑁 ) ↔ 𝑝 ∥ ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) ) ) |
71 |
63 67 69 70
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ ( ♯ ‘ 𝐾 ) ∧ 𝑝 ∥ 𝑁 ) ↔ 𝑝 ∥ ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) ) ) |
72 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 𝑀 ∈ ℤ ) |
73 |
|
dvdsgcdb |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑝 ∥ 𝑀 ∧ 𝑝 ∥ 𝑁 ) ↔ 𝑝 ∥ ( 𝑀 gcd 𝑁 ) ) ) |
74 |
63 72 69 73
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ 𝑀 ∧ 𝑝 ∥ 𝑁 ) ↔ 𝑝 ∥ ( 𝑀 gcd 𝑁 ) ) ) |
75 |
61 71 74
|
3imtr3d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) → 𝑝 ∥ ( 𝑀 gcd 𝑁 ) ) ) |
76 |
14 75
|
mtod |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ¬ 𝑝 ∥ ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) ) |
77 |
76
|
nrexdv |
⊢ ( 𝜑 → ¬ ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) ) |
78 |
|
exprmfct |
⊢ ( ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) ) |
79 |
77 78
|
nsyl |
⊢ ( 𝜑 → ¬ ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) ∈ ( ℤ≥ ‘ 2 ) ) |
80 |
7
|
nnne0d |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
81 |
|
simpr |
⊢ ( ( ( ♯ ‘ 𝐾 ) = 0 ∧ 𝑁 = 0 ) → 𝑁 = 0 ) |
82 |
81
|
necon3ai |
⊢ ( 𝑁 ≠ 0 → ¬ ( ( ♯ ‘ 𝐾 ) = 0 ∧ 𝑁 = 0 ) ) |
83 |
80 82
|
syl |
⊢ ( 𝜑 → ¬ ( ( ♯ ‘ 𝐾 ) = 0 ∧ 𝑁 = 0 ) ) |
84 |
|
gcdn0cl |
⊢ ( ( ( ( ♯ ‘ 𝐾 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( ( ♯ ‘ 𝐾 ) = 0 ∧ 𝑁 = 0 ) ) → ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) ∈ ℕ ) |
85 |
66 68 83 84
|
syl21anc |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) ∈ ℕ ) |
86 |
|
elnn1uz2 |
⊢ ( ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) ∈ ℕ ↔ ( ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) = 1 ∨ ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
87 |
85 86
|
sylib |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) = 1 ∨ ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
88 |
87
|
ord |
⊢ ( 𝜑 → ( ¬ ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) = 1 → ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
89 |
79 88
|
mt3d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) = 1 ) |