| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablfacrp.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
ablfacrp.o |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
| 3 |
|
ablfacrp.k |
⊢ 𝐾 = { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑀 } |
| 4 |
|
ablfacrp.l |
⊢ 𝐿 = { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑁 } |
| 5 |
|
ablfacrp.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
| 6 |
|
ablfacrp.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 7 |
|
ablfacrp.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 8 |
|
ablfacrp.1 |
⊢ ( 𝜑 → ( 𝑀 gcd 𝑁 ) = 1 ) |
| 9 |
|
ablfacrp.2 |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) = ( 𝑀 · 𝑁 ) ) |
| 10 |
|
nprmdvds1 |
⊢ ( 𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1 ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ¬ 𝑝 ∥ 1 ) |
| 12 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑀 gcd 𝑁 ) = 1 ) |
| 13 |
12
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝑀 gcd 𝑁 ) ↔ 𝑝 ∥ 1 ) ) |
| 14 |
11 13
|
mtbird |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ¬ 𝑝 ∥ ( 𝑀 gcd 𝑁 ) ) |
| 15 |
6
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 16 |
2 1
|
oddvdssubg |
⊢ ( ( 𝐺 ∈ Abel ∧ 𝑀 ∈ ℤ ) → { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑀 } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 17 |
5 15 16
|
syl2anc |
⊢ ( 𝜑 → { 𝑥 ∈ 𝐵 ∣ ( 𝑂 ‘ 𝑥 ) ∥ 𝑀 } ∈ ( SubGrp ‘ 𝐺 ) ) |
| 18 |
3 17
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 19 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) → 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 20 |
|
eqid |
⊢ ( 𝐺 ↾s 𝐾 ) = ( 𝐺 ↾s 𝐾 ) |
| 21 |
20
|
subggrp |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ↾s 𝐾 ) ∈ Grp ) |
| 22 |
19 21
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) → ( 𝐺 ↾s 𝐾 ) ∈ Grp ) |
| 23 |
20
|
subgbas |
⊢ ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) → 𝐾 = ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ) |
| 24 |
19 23
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) → 𝐾 = ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ) |
| 25 |
6
|
nnnn0d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 26 |
7
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 27 |
25 26
|
nn0mulcld |
⊢ ( 𝜑 → ( 𝑀 · 𝑁 ) ∈ ℕ0 ) |
| 28 |
9 27
|
eqeltrd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 29 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
| 30 |
|
hashclb |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ Fin ↔ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) ) |
| 31 |
29 30
|
ax-mp |
⊢ ( 𝐵 ∈ Fin ↔ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 32 |
28 31
|
sylibr |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 33 |
3
|
ssrab3 |
⊢ 𝐾 ⊆ 𝐵 |
| 34 |
|
ssfi |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝐾 ⊆ 𝐵 ) → 𝐾 ∈ Fin ) |
| 35 |
32 33 34
|
sylancl |
⊢ ( 𝜑 → 𝐾 ∈ Fin ) |
| 36 |
35
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) → 𝐾 ∈ Fin ) |
| 37 |
24 36
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) → ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ∈ Fin ) |
| 38 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) → 𝑝 ∈ ℙ ) |
| 39 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) → 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) |
| 40 |
24
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) → ( ♯ ‘ 𝐾 ) = ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ) ) |
| 41 |
39 40
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) → 𝑝 ∥ ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ) ) |
| 42 |
|
eqid |
⊢ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) = ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) |
| 43 |
|
eqid |
⊢ ( od ‘ ( 𝐺 ↾s 𝐾 ) ) = ( od ‘ ( 𝐺 ↾s 𝐾 ) ) |
| 44 |
42 43
|
odcau |
⊢ ( ( ( ( 𝐺 ↾s 𝐾 ) ∈ Grp ∧ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ∈ Fin ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ) ) → ∃ 𝑔 ∈ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ( ( od ‘ ( 𝐺 ↾s 𝐾 ) ) ‘ 𝑔 ) = 𝑝 ) |
| 45 |
22 37 38 41 44
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) → ∃ 𝑔 ∈ ( Base ‘ ( 𝐺 ↾s 𝐾 ) ) ( ( od ‘ ( 𝐺 ↾s 𝐾 ) ) ‘ 𝑔 ) = 𝑝 ) |
| 46 |
45 24
|
rexeqtrrdv |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) → ∃ 𝑔 ∈ 𝐾 ( ( od ‘ ( 𝐺 ↾s 𝐾 ) ) ‘ 𝑔 ) = 𝑝 ) |
| 47 |
20 2 43
|
subgod |
⊢ ( ( 𝐾 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑔 ∈ 𝐾 ) → ( 𝑂 ‘ 𝑔 ) = ( ( od ‘ ( 𝐺 ↾s 𝐾 ) ) ‘ 𝑔 ) ) |
| 48 |
19 47
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) ∧ 𝑔 ∈ 𝐾 ) → ( 𝑂 ‘ 𝑔 ) = ( ( od ‘ ( 𝐺 ↾s 𝐾 ) ) ‘ 𝑔 ) ) |
| 49 |
|
fveq2 |
⊢ ( 𝑥 = 𝑔 → ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 𝑔 ) ) |
| 50 |
49
|
breq1d |
⊢ ( 𝑥 = 𝑔 → ( ( 𝑂 ‘ 𝑥 ) ∥ 𝑀 ↔ ( 𝑂 ‘ 𝑔 ) ∥ 𝑀 ) ) |
| 51 |
50 3
|
elrab2 |
⊢ ( 𝑔 ∈ 𝐾 ↔ ( 𝑔 ∈ 𝐵 ∧ ( 𝑂 ‘ 𝑔 ) ∥ 𝑀 ) ) |
| 52 |
51
|
simprbi |
⊢ ( 𝑔 ∈ 𝐾 → ( 𝑂 ‘ 𝑔 ) ∥ 𝑀 ) |
| 53 |
52
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) ∧ 𝑔 ∈ 𝐾 ) → ( 𝑂 ‘ 𝑔 ) ∥ 𝑀 ) |
| 54 |
48 53
|
eqbrtrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) ∧ 𝑔 ∈ 𝐾 ) → ( ( od ‘ ( 𝐺 ↾s 𝐾 ) ) ‘ 𝑔 ) ∥ 𝑀 ) |
| 55 |
|
breq1 |
⊢ ( ( ( od ‘ ( 𝐺 ↾s 𝐾 ) ) ‘ 𝑔 ) = 𝑝 → ( ( ( od ‘ ( 𝐺 ↾s 𝐾 ) ) ‘ 𝑔 ) ∥ 𝑀 ↔ 𝑝 ∥ 𝑀 ) ) |
| 56 |
54 55
|
syl5ibcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) ∧ 𝑔 ∈ 𝐾 ) → ( ( ( od ‘ ( 𝐺 ↾s 𝐾 ) ) ‘ 𝑔 ) = 𝑝 → 𝑝 ∥ 𝑀 ) ) |
| 57 |
56
|
rexlimdva |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) → ( ∃ 𝑔 ∈ 𝐾 ( ( od ‘ ( 𝐺 ↾s 𝐾 ) ) ‘ 𝑔 ) = 𝑝 → 𝑝 ∥ 𝑀 ) ) |
| 58 |
46 57
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) ∧ 𝑝 ∥ ( ♯ ‘ 𝐾 ) ) → 𝑝 ∥ 𝑀 ) |
| 59 |
58
|
ex |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( ♯ ‘ 𝐾 ) → 𝑝 ∥ 𝑀 ) ) |
| 60 |
59
|
anim1d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ ( ♯ ‘ 𝐾 ) ∧ 𝑝 ∥ 𝑁 ) → ( 𝑝 ∥ 𝑀 ∧ 𝑝 ∥ 𝑁 ) ) ) |
| 61 |
|
prmz |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) |
| 62 |
61
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℤ ) |
| 63 |
|
hashcl |
⊢ ( 𝐾 ∈ Fin → ( ♯ ‘ 𝐾 ) ∈ ℕ0 ) |
| 64 |
35 63
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ∈ ℕ0 ) |
| 65 |
64
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐾 ) ∈ ℤ ) |
| 66 |
65
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ♯ ‘ 𝐾 ) ∈ ℤ ) |
| 67 |
7
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 68 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 𝑁 ∈ ℤ ) |
| 69 |
|
dvdsgcdb |
⊢ ( ( 𝑝 ∈ ℤ ∧ ( ♯ ‘ 𝐾 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑝 ∥ ( ♯ ‘ 𝐾 ) ∧ 𝑝 ∥ 𝑁 ) ↔ 𝑝 ∥ ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) ) ) |
| 70 |
62 66 68 69
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ ( ♯ ‘ 𝐾 ) ∧ 𝑝 ∥ 𝑁 ) ↔ 𝑝 ∥ ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) ) ) |
| 71 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → 𝑀 ∈ ℤ ) |
| 72 |
|
dvdsgcdb |
⊢ ( ( 𝑝 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑝 ∥ 𝑀 ∧ 𝑝 ∥ 𝑁 ) ↔ 𝑝 ∥ ( 𝑀 gcd 𝑁 ) ) ) |
| 73 |
62 71 68 72
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ∥ 𝑀 ∧ 𝑝 ∥ 𝑁 ) ↔ 𝑝 ∥ ( 𝑀 gcd 𝑁 ) ) ) |
| 74 |
60 70 73
|
3imtr3d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) → 𝑝 ∥ ( 𝑀 gcd 𝑁 ) ) ) |
| 75 |
14 74
|
mtod |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ℙ ) → ¬ 𝑝 ∥ ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) ) |
| 76 |
75
|
nrexdv |
⊢ ( 𝜑 → ¬ ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) ) |
| 77 |
|
exprmfct |
⊢ ( ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) ) |
| 78 |
76 77
|
nsyl |
⊢ ( 𝜑 → ¬ ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 79 |
7
|
nnne0d |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
| 80 |
|
simpr |
⊢ ( ( ( ♯ ‘ 𝐾 ) = 0 ∧ 𝑁 = 0 ) → 𝑁 = 0 ) |
| 81 |
80
|
necon3ai |
⊢ ( 𝑁 ≠ 0 → ¬ ( ( ♯ ‘ 𝐾 ) = 0 ∧ 𝑁 = 0 ) ) |
| 82 |
79 81
|
syl |
⊢ ( 𝜑 → ¬ ( ( ♯ ‘ 𝐾 ) = 0 ∧ 𝑁 = 0 ) ) |
| 83 |
|
gcdn0cl |
⊢ ( ( ( ( ♯ ‘ 𝐾 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( ( ♯ ‘ 𝐾 ) = 0 ∧ 𝑁 = 0 ) ) → ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) ∈ ℕ ) |
| 84 |
65 67 82 83
|
syl21anc |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) ∈ ℕ ) |
| 85 |
|
elnn1uz2 |
⊢ ( ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) ∈ ℕ ↔ ( ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) = 1 ∨ ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 86 |
84 85
|
sylib |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) = 1 ∨ ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 87 |
86
|
ord |
⊢ ( 𝜑 → ( ¬ ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) = 1 → ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
| 88 |
78 87
|
mt3d |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝐾 ) gcd 𝑁 ) = 1 ) |