| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ablfacrp.b |
|- B = ( Base ` G ) |
| 2 |
|
ablfacrp.o |
|- O = ( od ` G ) |
| 3 |
|
ablfacrp.k |
|- K = { x e. B | ( O ` x ) || M } |
| 4 |
|
ablfacrp.l |
|- L = { x e. B | ( O ` x ) || N } |
| 5 |
|
ablfacrp.g |
|- ( ph -> G e. Abel ) |
| 6 |
|
ablfacrp.m |
|- ( ph -> M e. NN ) |
| 7 |
|
ablfacrp.n |
|- ( ph -> N e. NN ) |
| 8 |
|
ablfacrp.1 |
|- ( ph -> ( M gcd N ) = 1 ) |
| 9 |
|
ablfacrp.2 |
|- ( ph -> ( # ` B ) = ( M x. N ) ) |
| 10 |
6
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
| 11 |
7
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 12 |
10 11
|
nn0mulcld |
|- ( ph -> ( M x. N ) e. NN0 ) |
| 13 |
9 12
|
eqeltrd |
|- ( ph -> ( # ` B ) e. NN0 ) |
| 14 |
1
|
fvexi |
|- B e. _V |
| 15 |
|
hashclb |
|- ( B e. _V -> ( B e. Fin <-> ( # ` B ) e. NN0 ) ) |
| 16 |
14 15
|
ax-mp |
|- ( B e. Fin <-> ( # ` B ) e. NN0 ) |
| 17 |
13 16
|
sylibr |
|- ( ph -> B e. Fin ) |
| 18 |
3
|
ssrab3 |
|- K C_ B |
| 19 |
|
ssfi |
|- ( ( B e. Fin /\ K C_ B ) -> K e. Fin ) |
| 20 |
17 18 19
|
sylancl |
|- ( ph -> K e. Fin ) |
| 21 |
|
hashcl |
|- ( K e. Fin -> ( # ` K ) e. NN0 ) |
| 22 |
20 21
|
syl |
|- ( ph -> ( # ` K ) e. NN0 ) |
| 23 |
6
|
nnzd |
|- ( ph -> M e. ZZ ) |
| 24 |
2 1
|
oddvdssubg |
|- ( ( G e. Abel /\ M e. ZZ ) -> { x e. B | ( O ` x ) || M } e. ( SubGrp ` G ) ) |
| 25 |
5 23 24
|
syl2anc |
|- ( ph -> { x e. B | ( O ` x ) || M } e. ( SubGrp ` G ) ) |
| 26 |
3 25
|
eqeltrid |
|- ( ph -> K e. ( SubGrp ` G ) ) |
| 27 |
1
|
lagsubg |
|- ( ( K e. ( SubGrp ` G ) /\ B e. Fin ) -> ( # ` K ) || ( # ` B ) ) |
| 28 |
26 17 27
|
syl2anc |
|- ( ph -> ( # ` K ) || ( # ` B ) ) |
| 29 |
6
|
nncnd |
|- ( ph -> M e. CC ) |
| 30 |
7
|
nncnd |
|- ( ph -> N e. CC ) |
| 31 |
29 30
|
mulcomd |
|- ( ph -> ( M x. N ) = ( N x. M ) ) |
| 32 |
9 31
|
eqtrd |
|- ( ph -> ( # ` B ) = ( N x. M ) ) |
| 33 |
28 32
|
breqtrd |
|- ( ph -> ( # ` K ) || ( N x. M ) ) |
| 34 |
1 2 3 4 5 6 7 8 9
|
ablfacrplem |
|- ( ph -> ( ( # ` K ) gcd N ) = 1 ) |
| 35 |
22
|
nn0zd |
|- ( ph -> ( # ` K ) e. ZZ ) |
| 36 |
7
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 37 |
|
coprmdvds |
|- ( ( ( # ` K ) e. ZZ /\ N e. ZZ /\ M e. ZZ ) -> ( ( ( # ` K ) || ( N x. M ) /\ ( ( # ` K ) gcd N ) = 1 ) -> ( # ` K ) || M ) ) |
| 38 |
35 36 23 37
|
syl3anc |
|- ( ph -> ( ( ( # ` K ) || ( N x. M ) /\ ( ( # ` K ) gcd N ) = 1 ) -> ( # ` K ) || M ) ) |
| 39 |
33 34 38
|
mp2and |
|- ( ph -> ( # ` K ) || M ) |
| 40 |
2 1
|
oddvdssubg |
|- ( ( G e. Abel /\ N e. ZZ ) -> { x e. B | ( O ` x ) || N } e. ( SubGrp ` G ) ) |
| 41 |
5 36 40
|
syl2anc |
|- ( ph -> { x e. B | ( O ` x ) || N } e. ( SubGrp ` G ) ) |
| 42 |
4 41
|
eqeltrid |
|- ( ph -> L e. ( SubGrp ` G ) ) |
| 43 |
1
|
lagsubg |
|- ( ( L e. ( SubGrp ` G ) /\ B e. Fin ) -> ( # ` L ) || ( # ` B ) ) |
| 44 |
42 17 43
|
syl2anc |
|- ( ph -> ( # ` L ) || ( # ` B ) ) |
| 45 |
44 9
|
breqtrd |
|- ( ph -> ( # ` L ) || ( M x. N ) ) |
| 46 |
23 36
|
gcdcomd |
|- ( ph -> ( M gcd N ) = ( N gcd M ) ) |
| 47 |
46 8
|
eqtr3d |
|- ( ph -> ( N gcd M ) = 1 ) |
| 48 |
1 2 4 3 5 7 6 47 32
|
ablfacrplem |
|- ( ph -> ( ( # ` L ) gcd M ) = 1 ) |
| 49 |
4
|
ssrab3 |
|- L C_ B |
| 50 |
|
ssfi |
|- ( ( B e. Fin /\ L C_ B ) -> L e. Fin ) |
| 51 |
17 49 50
|
sylancl |
|- ( ph -> L e. Fin ) |
| 52 |
|
hashcl |
|- ( L e. Fin -> ( # ` L ) e. NN0 ) |
| 53 |
51 52
|
syl |
|- ( ph -> ( # ` L ) e. NN0 ) |
| 54 |
53
|
nn0zd |
|- ( ph -> ( # ` L ) e. ZZ ) |
| 55 |
|
coprmdvds |
|- ( ( ( # ` L ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( # ` L ) || ( M x. N ) /\ ( ( # ` L ) gcd M ) = 1 ) -> ( # ` L ) || N ) ) |
| 56 |
54 23 36 55
|
syl3anc |
|- ( ph -> ( ( ( # ` L ) || ( M x. N ) /\ ( ( # ` L ) gcd M ) = 1 ) -> ( # ` L ) || N ) ) |
| 57 |
45 48 56
|
mp2and |
|- ( ph -> ( # ` L ) || N ) |
| 58 |
|
dvdscmul |
|- ( ( ( # ` L ) e. ZZ /\ N e. ZZ /\ M e. ZZ ) -> ( ( # ` L ) || N -> ( M x. ( # ` L ) ) || ( M x. N ) ) ) |
| 59 |
54 36 23 58
|
syl3anc |
|- ( ph -> ( ( # ` L ) || N -> ( M x. ( # ` L ) ) || ( M x. N ) ) ) |
| 60 |
57 59
|
mpd |
|- ( ph -> ( M x. ( # ` L ) ) || ( M x. N ) ) |
| 61 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 62 |
|
eqid |
|- ( LSSum ` G ) = ( LSSum ` G ) |
| 63 |
1 2 3 4 5 6 7 8 9 61 62
|
ablfacrp |
|- ( ph -> ( ( K i^i L ) = { ( 0g ` G ) } /\ ( K ( LSSum ` G ) L ) = B ) ) |
| 64 |
63
|
simprd |
|- ( ph -> ( K ( LSSum ` G ) L ) = B ) |
| 65 |
64
|
fveq2d |
|- ( ph -> ( # ` ( K ( LSSum ` G ) L ) ) = ( # ` B ) ) |
| 66 |
|
eqid |
|- ( Cntz ` G ) = ( Cntz ` G ) |
| 67 |
63
|
simpld |
|- ( ph -> ( K i^i L ) = { ( 0g ` G ) } ) |
| 68 |
66 5 26 42
|
ablcntzd |
|- ( ph -> K C_ ( ( Cntz ` G ) ` L ) ) |
| 69 |
62 61 66 26 42 67 68 20 51
|
lsmhash |
|- ( ph -> ( # ` ( K ( LSSum ` G ) L ) ) = ( ( # ` K ) x. ( # ` L ) ) ) |
| 70 |
65 69
|
eqtr3d |
|- ( ph -> ( # ` B ) = ( ( # ` K ) x. ( # ` L ) ) ) |
| 71 |
70 9
|
eqtr3d |
|- ( ph -> ( ( # ` K ) x. ( # ` L ) ) = ( M x. N ) ) |
| 72 |
60 71
|
breqtrrd |
|- ( ph -> ( M x. ( # ` L ) ) || ( ( # ` K ) x. ( # ` L ) ) ) |
| 73 |
61
|
subg0cl |
|- ( L e. ( SubGrp ` G ) -> ( 0g ` G ) e. L ) |
| 74 |
|
ne0i |
|- ( ( 0g ` G ) e. L -> L =/= (/) ) |
| 75 |
42 73 74
|
3syl |
|- ( ph -> L =/= (/) ) |
| 76 |
|
hashnncl |
|- ( L e. Fin -> ( ( # ` L ) e. NN <-> L =/= (/) ) ) |
| 77 |
51 76
|
syl |
|- ( ph -> ( ( # ` L ) e. NN <-> L =/= (/) ) ) |
| 78 |
75 77
|
mpbird |
|- ( ph -> ( # ` L ) e. NN ) |
| 79 |
78
|
nnne0d |
|- ( ph -> ( # ` L ) =/= 0 ) |
| 80 |
|
dvdsmulcr |
|- ( ( M e. ZZ /\ ( # ` K ) e. ZZ /\ ( ( # ` L ) e. ZZ /\ ( # ` L ) =/= 0 ) ) -> ( ( M x. ( # ` L ) ) || ( ( # ` K ) x. ( # ` L ) ) <-> M || ( # ` K ) ) ) |
| 81 |
23 35 54 79 80
|
syl112anc |
|- ( ph -> ( ( M x. ( # ` L ) ) || ( ( # ` K ) x. ( # ` L ) ) <-> M || ( # ` K ) ) ) |
| 82 |
72 81
|
mpbid |
|- ( ph -> M || ( # ` K ) ) |
| 83 |
|
dvdseq |
|- ( ( ( ( # ` K ) e. NN0 /\ M e. NN0 ) /\ ( ( # ` K ) || M /\ M || ( # ` K ) ) ) -> ( # ` K ) = M ) |
| 84 |
22 10 39 82 83
|
syl22anc |
|- ( ph -> ( # ` K ) = M ) |
| 85 |
|
dvdsmulc |
|- ( ( ( # ` K ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( # ` K ) || M -> ( ( # ` K ) x. N ) || ( M x. N ) ) ) |
| 86 |
35 23 36 85
|
syl3anc |
|- ( ph -> ( ( # ` K ) || M -> ( ( # ` K ) x. N ) || ( M x. N ) ) ) |
| 87 |
39 86
|
mpd |
|- ( ph -> ( ( # ` K ) x. N ) || ( M x. N ) ) |
| 88 |
87 71
|
breqtrrd |
|- ( ph -> ( ( # ` K ) x. N ) || ( ( # ` K ) x. ( # ` L ) ) ) |
| 89 |
84 6
|
eqeltrd |
|- ( ph -> ( # ` K ) e. NN ) |
| 90 |
89
|
nnne0d |
|- ( ph -> ( # ` K ) =/= 0 ) |
| 91 |
|
dvdscmulr |
|- ( ( N e. ZZ /\ ( # ` L ) e. ZZ /\ ( ( # ` K ) e. ZZ /\ ( # ` K ) =/= 0 ) ) -> ( ( ( # ` K ) x. N ) || ( ( # ` K ) x. ( # ` L ) ) <-> N || ( # ` L ) ) ) |
| 92 |
36 54 35 90 91
|
syl112anc |
|- ( ph -> ( ( ( # ` K ) x. N ) || ( ( # ` K ) x. ( # ` L ) ) <-> N || ( # ` L ) ) ) |
| 93 |
88 92
|
mpbid |
|- ( ph -> N || ( # ` L ) ) |
| 94 |
|
dvdseq |
|- ( ( ( ( # ` L ) e. NN0 /\ N e. NN0 ) /\ ( ( # ` L ) || N /\ N || ( # ` L ) ) ) -> ( # ` L ) = N ) |
| 95 |
53 11 57 93 94
|
syl22anc |
|- ( ph -> ( # ` L ) = N ) |
| 96 |
84 95
|
jca |
|- ( ph -> ( ( # ` K ) = M /\ ( # ` L ) = N ) ) |