Metamath Proof Explorer


Theorem ablfacrp

Description: A finite abelian group whose order factors into relatively prime integers, itself "factors" into two subgroups K , L that have trivial intersection and whose product is the whole group. Lemma 6.1C.2 of Shapiro, p. 199. (Contributed by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses ablfacrp.b B = Base G
ablfacrp.o O = od G
ablfacrp.k K = x B | O x M
ablfacrp.l L = x B | O x N
ablfacrp.g φ G Abel
ablfacrp.m φ M
ablfacrp.n φ N
ablfacrp.1 φ M gcd N = 1
ablfacrp.2 φ B = M N
ablfacrp.z 0 ˙ = 0 G
ablfacrp.s ˙ = LSSum G
Assertion ablfacrp φ K L = 0 ˙ K ˙ L = B

Proof

Step Hyp Ref Expression
1 ablfacrp.b B = Base G
2 ablfacrp.o O = od G
3 ablfacrp.k K = x B | O x M
4 ablfacrp.l L = x B | O x N
5 ablfacrp.g φ G Abel
6 ablfacrp.m φ M
7 ablfacrp.n φ N
8 ablfacrp.1 φ M gcd N = 1
9 ablfacrp.2 φ B = M N
10 ablfacrp.z 0 ˙ = 0 G
11 ablfacrp.s ˙ = LSSum G
12 3 4 ineq12i K L = x B | O x M x B | O x N
13 inrab x B | O x M x B | O x N = x B | O x M O x N
14 12 13 eqtri K L = x B | O x M O x N
15 1 2 odcl x B O x 0
16 15 adantl φ x B O x 0
17 16 nn0zd φ x B O x
18 6 nnzd φ M
19 18 adantr φ x B M
20 7 nnzd φ N
21 20 adantr φ x B N
22 dvdsgcd O x M N O x M O x N O x M gcd N
23 17 19 21 22 syl3anc φ x B O x M O x N O x M gcd N
24 23 3impia φ x B O x M O x N O x M gcd N
25 8 3ad2ant1 φ x B O x M O x N M gcd N = 1
26 24 25 breqtrd φ x B O x M O x N O x 1
27 simp2 φ x B O x M O x N x B
28 dvds1 O x 0 O x 1 O x = 1
29 27 15 28 3syl φ x B O x M O x N O x 1 O x = 1
30 26 29 mpbid φ x B O x M O x N O x = 1
31 ablgrp G Abel G Grp
32 5 31 syl φ G Grp
33 32 3ad2ant1 φ x B O x M O x N G Grp
34 2 10 1 odeq1 G Grp x B O x = 1 x = 0 ˙
35 33 27 34 syl2anc φ x B O x M O x N O x = 1 x = 0 ˙
36 30 35 mpbid φ x B O x M O x N x = 0 ˙
37 velsn x 0 ˙ x = 0 ˙
38 36 37 sylibr φ x B O x M O x N x 0 ˙
39 38 rabssdv φ x B | O x M O x N 0 ˙
40 14 39 eqsstrid φ K L 0 ˙
41 2 1 oddvdssubg G Abel M x B | O x M SubGrp G
42 5 18 41 syl2anc φ x B | O x M SubGrp G
43 3 42 eqeltrid φ K SubGrp G
44 10 subg0cl K SubGrp G 0 ˙ K
45 43 44 syl φ 0 ˙ K
46 2 1 oddvdssubg G Abel N x B | O x N SubGrp G
47 5 20 46 syl2anc φ x B | O x N SubGrp G
48 4 47 eqeltrid φ L SubGrp G
49 10 subg0cl L SubGrp G 0 ˙ L
50 48 49 syl φ 0 ˙ L
51 45 50 elind φ 0 ˙ K L
52 51 snssd φ 0 ˙ K L
53 40 52 eqssd φ K L = 0 ˙
54 11 lsmsubg2 G Abel K SubGrp G L SubGrp G K ˙ L SubGrp G
55 5 43 48 54 syl3anc φ K ˙ L SubGrp G
56 1 subgss K ˙ L SubGrp G K ˙ L B
57 55 56 syl φ K ˙ L B
58 eqid G = G
59 1 58 mulg1 g B 1 G g = g
60 59 adantl φ g B 1 G g = g
61 bezout M N a b M gcd N = M a + N b
62 18 20 61 syl2anc φ a b M gcd N = M a + N b
63 62 adantr φ g B a b M gcd N = M a + N b
64 8 ad2antrr φ g B a b M gcd N = 1
65 64 eqeq1d φ g B a b M gcd N = M a + N b 1 = M a + N b
66 18 ad2antrr φ g B a b M
67 simprl φ g B a b a
68 66 67 zmulcld φ g B a b M a
69 68 zcnd φ g B a b M a
70 20 ad2antrr φ g B a b N
71 simprr φ g B a b b
72 70 71 zmulcld φ g B a b N b
73 72 zcnd φ g B a b N b
74 69 73 addcomd φ g B a b M a + N b = N b + M a
75 74 oveq1d φ g B a b M a + N b G g = N b + M a G g
76 32 ad2antrr φ g B a b G Grp
77 simplr φ g B a b g B
78 eqid + G = + G
79 1 58 78 mulgdir G Grp N b M a g B N b + M a G g = N b G g + G M a G g
80 76 72 68 77 79 syl13anc φ g B a b N b + M a G g = N b G g + G M a G g
81 75 80 eqtrd φ g B a b M a + N b G g = N b G g + G M a G g
82 43 ad2antrr φ g B a b K SubGrp G
83 48 ad2antrr φ g B a b L SubGrp G
84 1 58 mulgcl G Grp N b g B N b G g B
85 76 72 77 84 syl3anc φ g B a b N b G g B
86 1 2 odcl g B O g 0
87 86 ad2antlr φ g B a b O g 0
88 87 nn0zd φ g B a b O g
89 66 70 zmulcld φ g B a b M N
90 6 7 nnmulcld φ M N
91 90 nnnn0d φ M N 0
92 9 91 eqeltrd φ B 0
93 1 fvexi B V
94 hashclb B V B Fin B 0
95 93 94 ax-mp B Fin B 0
96 92 95 sylibr φ B Fin
97 96 ad2antrr φ g B a b B Fin
98 1 2 oddvds2 G Grp B Fin g B O g B
99 76 97 77 98 syl3anc φ g B a b O g B
100 9 ad2antrr φ g B a b B = M N
101 99 100 breqtrd φ g B a b O g M N
102 88 89 71 101 dvdsmultr1d φ g B a b O g M N b
103 66 zcnd φ g B a b M
104 70 zcnd φ g B a b N
105 71 zcnd φ g B a b b
106 103 104 105 mulassd φ g B a b M N b = M N b
107 102 106 breqtrd φ g B a b O g M N b
108 1 2 58 odmulgid G Grp g B N b M O N b G g M O g M N b
109 76 77 72 66 108 syl31anc φ g B a b O N b G g M O g M N b
110 107 109 mpbird φ g B a b O N b G g M
111 fveq2 x = N b G g O x = O N b G g
112 111 breq1d x = N b G g O x M O N b G g M
113 112 3 elrab2 N b G g K N b G g B O N b G g M
114 85 110 113 sylanbrc φ g B a b N b G g K
115 1 58 mulgcl G Grp M a g B M a G g B
116 76 68 77 115 syl3anc φ g B a b M a G g B
117 88 89 67 101 dvdsmultr1d φ g B a b O g M N a
118 zcn a a
119 118 ad2antrl φ g B a b a
120 mulass M N a M N a = M N a
121 mul12 M N a M N a = N M a
122 120 121 eqtrd M N a M N a = N M a
123 103 104 119 122 syl3anc φ g B a b M N a = N M a
124 117 123 breqtrd φ g B a b O g N M a
125 1 2 58 odmulgid G Grp g B M a N O M a G g N O g N M a
126 76 77 68 70 125 syl31anc φ g B a b O M a G g N O g N M a
127 124 126 mpbird φ g B a b O M a G g N
128 fveq2 x = M a G g O x = O M a G g
129 128 breq1d x = M a G g O x N O M a G g N
130 129 4 elrab2 M a G g L M a G g B O M a G g N
131 116 127 130 sylanbrc φ g B a b M a G g L
132 78 11 lsmelvali K SubGrp G L SubGrp G N b G g K M a G g L N b G g + G M a G g K ˙ L
133 82 83 114 131 132 syl22anc φ g B a b N b G g + G M a G g K ˙ L
134 81 133 eqeltrd φ g B a b M a + N b G g K ˙ L
135 oveq1 1 = M a + N b 1 G g = M a + N b G g
136 135 eleq1d 1 = M a + N b 1 G g K ˙ L M a + N b G g K ˙ L
137 134 136 syl5ibrcom φ g B a b 1 = M a + N b 1 G g K ˙ L
138 65 137 sylbid φ g B a b M gcd N = M a + N b 1 G g K ˙ L
139 138 rexlimdvva φ g B a b M gcd N = M a + N b 1 G g K ˙ L
140 63 139 mpd φ g B 1 G g K ˙ L
141 60 140 eqeltrrd φ g B g K ˙ L
142 57 141 eqelssd φ K ˙ L = B
143 53 142 jca φ K L = 0 ˙ K ˙ L = B