Description: The group identity is the unique element of a group with order one. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Mario Carneiro, 23-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | od1.1 | |
|
od1.2 | |
||
odeq1.3 | |
||
Assertion | odeq1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | od1.1 | |
|
2 | od1.2 | |
|
3 | odeq1.3 | |
|
4 | oveq1 | |
|
5 | 4 | eqcomd | |
6 | eqid | |
|
7 | 3 6 | mulg1 | |
8 | 3 1 6 2 | odid | |
9 | 7 8 | eqeq12d | |
10 | 9 | adantl | |
11 | 5 10 | imbitrid | |
12 | 1 2 | od1 | |
13 | 12 | adantr | |
14 | fveqeq2 | |
|
15 | 13 14 | syl5ibrcom | |
16 | 11 15 | impbid | |