Metamath Proof Explorer


Theorem odeq1

Description: The group identity is the unique element of a group with order one. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Mario Carneiro, 23-Sep-2015)

Ref Expression
Hypotheses od1.1 O=odG
od1.2 0˙=0G
odeq1.3 X=BaseG
Assertion odeq1 GGrpAXOA=1A=0˙

Proof

Step Hyp Ref Expression
1 od1.1 O=odG
2 od1.2 0˙=0G
3 odeq1.3 X=BaseG
4 oveq1 OA=1OAGA=1GA
5 4 eqcomd OA=11GA=OAGA
6 eqid G=G
7 3 6 mulg1 AX1GA=A
8 3 1 6 2 odid AXOAGA=0˙
9 7 8 eqeq12d AX1GA=OAGAA=0˙
10 9 adantl GGrpAX1GA=OAGAA=0˙
11 5 10 imbitrid GGrpAXOA=1A=0˙
12 1 2 od1 GGrpO0˙=1
13 12 adantr GGrpAXO0˙=1
14 fveqeq2 A=0˙OA=1O0˙=1
15 13 14 syl5ibrcom GGrpAXA=0˙OA=1
16 11 15 impbid GGrpAXOA=1A=0˙