Metamath Proof Explorer


Theorem abscvgcvg

Description: An absolutely convergent series is convergent. (Contributed by Mario Carneiro, 28-Apr-2014)

Ref Expression
Hypotheses abscvgcvg.1 Z=M
abscvgcvg.2 φM
abscvgcvg.3 φkZFk=Gk
abscvgcvg.4 φkZGk
abscvgcvg.5 φseqM+Fdom
Assertion abscvgcvg φseqM+Gdom

Proof

Step Hyp Ref Expression
1 abscvgcvg.1 Z=M
2 abscvgcvg.2 φM
3 abscvgcvg.3 φkZFk=Gk
4 abscvgcvg.4 φkZGk
5 abscvgcvg.5 φseqM+Fdom
6 uzid MMM
7 2 6 syl φMM
8 7 1 eleqtrrdi φMZ
9 4 abscld φkZGk
10 3 9 eqeltrd φkZFk
11 1red φ1
12 1 eleq2i kZkM
13 3 eqcomd φkZGk=Fk
14 9 13 eqled φkZGkFk
15 10 recnd φkZFk
16 15 mullidd φkZ1Fk=Fk
17 14 16 breqtrrd φkZGk1Fk
18 12 17 sylan2br φkMGk1Fk
19 1 8 10 4 5 11 18 cvgcmpce φseqM+Gdom