Description: An absolutely convergent series is convergent. (Contributed by Mario Carneiro, 28-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | abscvgcvg.1 | |
|
abscvgcvg.2 | |
||
abscvgcvg.3 | |
||
abscvgcvg.4 | |
||
abscvgcvg.5 | |
||
Assertion | abscvgcvg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abscvgcvg.1 | |
|
2 | abscvgcvg.2 | |
|
3 | abscvgcvg.3 | |
|
4 | abscvgcvg.4 | |
|
5 | abscvgcvg.5 | |
|
6 | uzid | |
|
7 | 2 6 | syl | |
8 | 7 1 | eleqtrrdi | |
9 | 4 | abscld | |
10 | 3 9 | eqeltrd | |
11 | 1red | |
|
12 | 1 | eleq2i | |
13 | 3 | eqcomd | |
14 | 9 13 | eqled | |
15 | 10 | recnd | |
16 | 15 | mullidd | |
17 | 14 16 | breqtrrd | |
18 | 12 17 | sylan2br | |
19 | 1 8 10 4 5 11 18 | cvgcmpce | |