Metamath Proof Explorer


Theorem abv1z

Description: The absolute value of one is one in a non-trivial ring. (Contributed by Mario Carneiro, 8-Sep-2014)

Ref Expression
Hypotheses abv0.a A=AbsValR
abv1.p 1˙=1R
abv1z.z 0˙=0R
Assertion abv1z FA1˙0˙F1˙=1

Proof

Step Hyp Ref Expression
1 abv0.a A=AbsValR
2 abv1.p 1˙=1R
3 abv1z.z 0˙=0R
4 1 abvrcl FARRing
5 eqid BaseR=BaseR
6 5 2 ringidcl RRing1˙BaseR
7 4 6 syl FA1˙BaseR
8 1 5 abvcl FA1˙BaseRF1˙
9 7 8 mpdan FAF1˙
10 9 adantr FA1˙0˙F1˙
11 10 recnd FA1˙0˙F1˙
12 simpl FA1˙0˙FA
13 7 adantr FA1˙0˙1˙BaseR
14 simpr FA1˙0˙1˙0˙
15 1 5 3 abvne0 FA1˙BaseR1˙0˙F1˙0
16 12 13 14 15 syl3anc FA1˙0˙F1˙0
17 11 11 16 divcan3d FA1˙0˙F1˙F1˙F1˙=F1˙
18 eqid R=R
19 5 18 2 ringlidm RRing1˙BaseR1˙R1˙=1˙
20 4 13 19 syl2an2r FA1˙0˙1˙R1˙=1˙
21 20 fveq2d FA1˙0˙F1˙R1˙=F1˙
22 1 5 18 abvmul FA1˙BaseR1˙BaseRF1˙R1˙=F1˙F1˙
23 12 13 13 22 syl3anc FA1˙0˙F1˙R1˙=F1˙F1˙
24 21 23 eqtr3d FA1˙0˙F1˙=F1˙F1˙
25 24 oveq1d FA1˙0˙F1˙F1˙=F1˙F1˙F1˙
26 11 16 dividd FA1˙0˙F1˙F1˙=1
27 25 26 eqtr3d FA1˙0˙F1˙F1˙F1˙=1
28 17 27 eqtr3d FA1˙0˙F1˙=1