| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abv0.a |
|
| 2 |
|
abv1.p |
|
| 3 |
|
abv1z.z |
|
| 4 |
1
|
abvrcl |
|
| 5 |
|
eqid |
|
| 6 |
5 2
|
ringidcl |
|
| 7 |
4 6
|
syl |
|
| 8 |
1 5
|
abvcl |
|
| 9 |
7 8
|
mpdan |
|
| 10 |
9
|
adantr |
|
| 11 |
10
|
recnd |
|
| 12 |
|
simpl |
|
| 13 |
7
|
adantr |
|
| 14 |
|
simpr |
|
| 15 |
1 5 3
|
abvne0 |
|
| 16 |
12 13 14 15
|
syl3anc |
|
| 17 |
11 11 16
|
divcan3d |
|
| 18 |
|
eqid |
|
| 19 |
5 18 2
|
ringlidm |
|
| 20 |
4 13 19
|
syl2an2r |
|
| 21 |
20
|
fveq2d |
|
| 22 |
1 5 18
|
abvmul |
|
| 23 |
12 13 13 22
|
syl3anc |
|
| 24 |
21 23
|
eqtr3d |
|
| 25 |
24
|
oveq1d |
|
| 26 |
11 16
|
dividd |
|
| 27 |
25 26
|
eqtr3d |
|
| 28 |
17 27
|
eqtr3d |
|