Description: The absolute value of one is one in a non-trivial ring. (Contributed by Mario Carneiro, 8-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | abv0.a | |
|
abv1.p | |
||
abv1z.z | |
||
Assertion | abv1z | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abv0.a | |
|
2 | abv1.p | |
|
3 | abv1z.z | |
|
4 | 1 | abvrcl | |
5 | eqid | |
|
6 | 5 2 | ringidcl | |
7 | 4 6 | syl | |
8 | 1 5 | abvcl | |
9 | 7 8 | mpdan | |
10 | 9 | adantr | |
11 | 10 | recnd | |
12 | simpl | |
|
13 | 7 | adantr | |
14 | simpr | |
|
15 | 1 5 3 | abvne0 | |
16 | 12 13 14 15 | syl3anc | |
17 | 11 11 16 | divcan3d | |
18 | eqid | |
|
19 | 5 18 2 | ringlidm | |
20 | 4 13 19 | syl2an2r | |
21 | 20 | fveq2d | |
22 | 1 5 18 | abvmul | |
23 | 12 13 13 22 | syl3anc | |
24 | 21 23 | eqtr3d | |
25 | 24 | oveq1d | |
26 | 11 16 | dividd | |
27 | 25 26 | eqtr3d | |
28 | 17 27 | eqtr3d | |