Metamath Proof Explorer


Theorem ac6s6

Description: Generalization of the Axiom of Choice to classes, moving the existence condition in the consequent. (Contributed by Giovanni Mascellani, 19-Aug-2018)

Ref Expression
Hypotheses ac6s6.1 yψ
ac6s6.2 AV
ac6s6.3 y=fxφψ
Assertion ac6s6 fxAyφψ

Proof

Step Hyp Ref Expression
1 ac6s6.1 yψ
2 ac6s6.2 AV
3 ac6s6.3 y=fxφψ
4 hbe1 yφyyφ
5 iftrue yφifyφy|φV=y|φ
6 5 eqabrd yφyifyφy|φVφ
7 4 6 exbidh yφyyifyφy|φVyφ
8 7 ibir yφyyifyφy|φV
9 vex yV
10 9 exgen yyV
11 4 hbn ¬yφy¬yφ
12 iffalse ¬yφifyφy|φV=V
13 12 eleq2d ¬yφyifyφy|φVyV
14 11 13 exbidh ¬yφyyifyφy|φVyyV
15 10 14 mpbiri ¬yφyyifyφy|φV
16 8 15 pm2.61i yyifyφy|φV
17 16 rgenw xAyyifyφy|φV
18 nfe1 yyφ
19 18 1 nfim yyφψ
20 id ¬φ¬φ
21 20 a1i ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φ¬φ
22 ax-1 ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ
23 tsim3 ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬yφyifyφy|φVφyφy=fxyifyφy|φVyφψy=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ
24 23 a1d ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φ¬yφyifyφy|φVφyφy=fxyifyφy|φVyφψy=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ
25 22 24 cnf2dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φ¬yφyifyφy|φVφyφy=fxyifyφy|φVyφψ
26 tsim3 ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬yφy=fxyifyφy|φVyφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ
27 26 a1d ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φ¬yφy=fxyifyφy|φVyφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ
28 25 27 cnf2dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φ¬yφy=fxyifyφy|φVyφψ
29 tsim2 ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψyφyφy=fxyifyφy|φVyφψ
30 29 a1d ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φyφyφy=fxyifyφy|φVyφψ
31 28 30 cnf2dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φyφ
32 tsim2 ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψyφyifyφy|φVφyφyifyφy|φVφyφy=fxyifyφy|φVyφψ
33 32 a1d ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φyφyifyφy|φVφyφyifyφy|φVφyφy=fxyifyφy|φVyφψ
34 25 33 cnf2dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φyφyifyφy|φVφ
35 31 34 mpdd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φyifyφy|φVφ
36 tsbi4 ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬yifyφy|φVφ¬yifyφy|φVφ
37 36 a1d ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φ¬yifyφy|φVφ¬yifyφy|φVφ
38 35 37 cnfn2dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φ¬yifyφy|φVφ
39 21 38 cnf2dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φ¬yifyφy|φV
40 tsim3 ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬y=fxyifyφy|φVyφψyφy=fxyifyφy|φVyφψ
41 40 a1d ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φ¬y=fxyifyφy|φVyφψyφy=fxyifyφy|φVyφψ
42 28 41 cnf2dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φ¬y=fxyifyφy|φVyφψ
43 tsim3 ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬yifyφy|φVyφψy=fxyifyφy|φVyφψ
44 43 a1d ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φ¬yifyφy|φVyφψy=fxyifyφy|φVyφψ
45 42 44 cnf2dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φ¬yifyφy|φVyφψ
46 tsbi2 ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψyifyφy|φVyφψyifyφy|φVyφψ
47 46 a1d ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φyifyφy|φVyφψyifyφy|φVyφψ
48 45 47 cnf2dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φyifyφy|φVyφψ
49 39 48 cnf1dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φyφψ
50 tsim2 ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψy=fxy=fxyifyφy|φVyφψ
51 50 a1d ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φy=fxy=fxyifyφy|φVyφψ
52 42 51 cnf2dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φy=fx
53 simplim ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψy=fxφψ
54 52 53 syld ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φφψ
55 tsbi3 ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψφ¬ψ¬φψ
56 55 a1d ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φφ¬ψ¬φψ
57 54 56 cnfn2dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φφ¬ψ
58 21 57 cnf1dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φ¬ψ
59 tsim1 ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬yφψ¬yφψ
60 59 a1d ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φ¬yφψ¬yφψ
61 60 or32dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φ¬yφ¬yφψψ
62 58 61 cnf2dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φ¬yφ¬yφψ
63 31 62 cnfn1dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φ¬yφψ
64 49 63 contrd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψφ
65 64 a1d ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φ
66 ax-1 ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ
67 23 a1d ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬¬yφyifyφy|φVφyφy=fxyifyφy|φVyφψy=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ
68 66 67 cnf2dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬¬yφyifyφy|φVφyφy=fxyifyφy|φVyφψ
69 26 a1d ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬¬yφy=fxyifyφy|φVyφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ
70 68 69 cnf2dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬¬yφy=fxyifyφy|φVyφψ
71 29 a1d ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬yφyφy=fxyifyφy|φVyφψ
72 70 71 cnf2dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬yφ
73 32 a1d ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬yφyifyφy|φVφyφyifyφy|φVφyφy=fxyifyφy|φVyφψ
74 68 73 cnf2dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬yφyifyφy|φVφ
75 72 74 mpdd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬yifyφy|φVφ
76 tsbi3 ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψyifyφy|φV¬φ¬yifyφy|φVφ
77 76 a1d ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬yifyφy|φV¬φ¬yifyφy|φVφ
78 75 77 cnfn2dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬yifyφy|φV¬φ
79 65 78 cnfn2dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬yifyφy|φV
80 40 a1d ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬¬y=fxyifyφy|φVyφψyφy=fxyifyφy|φVyφψ
81 70 80 cnf2dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬¬y=fxyifyφy|φVyφψ
82 50 a1d ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬y=fxy=fxyifyφy|φVyφψ
83 81 82 cnf2dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬y=fx
84 83 53 syld ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φψ
85 tsbi4 ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬φψ¬φψ
86 85 a1d ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬¬φψ¬φψ
87 84 86 cnfn2dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬¬φψ
88 65 87 cnfn1dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬ψ
89 88 a1dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬yφψ
90 tsbi1 ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬yifyφy|φV¬yφψyifyφy|φVyφψ
91 90 a1d ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬¬yifyφy|φV¬yφψyifyφy|φVyφψ
92 91 or32dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬¬yifyφy|φVyifyφy|φVyφψ¬yφψ
93 89 92 cnfn2dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬¬yifyφy|φVyifyφy|φVyφψ
94 79 93 cnfn1dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬yifyφy|φVyφψ
95 43 a1d ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬¬yifyφy|φVyφψy=fxyifyφy|φVyφψ
96 81 95 cnf2dd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ¬¬yifyφy|φVyφψ
97 94 96 contrd ¬y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ
98 97 efald2 y=fxφψyφyifyφy|φVφyφy=fxyifyφy|φVyφψ
99 3 98 ax-mp yφyifyφy|φVφyφy=fxyifyφy|φVyφψ
100 6 99 ax-mp yφy=fxyifyφy|φVyφψ
101 9 a1i ¬yφyV
102 id ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV
103 tsim2 ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬yφ¬yφyifyφy|φV
104 103 ord ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬¬yφ¬yφyifyφy|φV
105 104 a1dd ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬¬yφ¬yφyifyφy|φVyV¬yφyifyφy|φV
106 105 a1dd ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬¬yφ¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV
107 102 106 mt3d ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬yφ
108 107 a1d ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬¬yφ
109 simplim ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬yφyV
110 108 109 syld ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬yV
111 tsim2 ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬yφyifyφy|φVyV¬yφyifyφy|φVyV¬yφyifyφy|φV
112 111 ord ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬¬yφyifyφy|φVyV¬yφyifyφy|φVyV¬yφyifyφy|φV
113 112 a1dd ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬¬yφyifyφy|φVyV¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV
114 102 113 mt3d ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬yφyifyφy|φVyV
115 108 114 syld ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬yifyφy|φVyV
116 id ¬¬yifyφy|φVyV¬yV¬¬yifyφy|φVyV¬yV
117 116 notornotel2 ¬¬yifyφy|φVyV¬yVyV
118 117 a1i ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬¬yifyφy|φVyV¬yVyV
119 116 notornotel1 ¬¬yifyφy|φVyV¬yVyifyφy|φVyV
120 119 a1i ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬¬yifyφy|φVyV¬yVyifyφy|φVyV
121 tsbi3 ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φVyifyφy|φV¬yV¬yifyφy|φVyV
122 121 a1d ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬¬yifyφy|φVyV¬yVyifyφy|φV¬yV¬yifyφy|φVyV
123 120 122 cnfn2dd ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬¬yifyφy|φVyV¬yVyifyφy|φV¬yV
124 118 123 cnfn2dd ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬¬yifyφy|φVyV¬yVyifyφy|φV
125 trud ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV
126 125 a1d ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬¬yifyφy|φVyV¬yV
127 tsbi1 ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬yifyφy|φV¬yifyφy|φV
128 127 a1d ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬¬yifyφy|φVyV¬yV¬yifyφy|φV¬yifyφy|φV
129 128 or32dd ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬¬yifyφy|φVyV¬yV¬yifyφy|φVyifyφy|φV¬
130 126 129 cnfn2dd ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬¬yifyφy|φVyV¬yV¬yifyφy|φVyifyφy|φV
131 124 130 cnfn1dd ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬¬yifyφy|φVyV¬yVyifyφy|φV
132 131 a1dd ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬¬yifyφy|φVyV¬yV¬yφyifyφy|φV
133 132 a1dd ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬¬yifyφy|φVyV¬yV¬yφyifyφy|φVyV¬yφyifyφy|φV
134 ax-1 ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬¬yifyφy|φVyV¬yV¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV
135 tsim3 ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬¬yφyifyφy|φVyV¬yφyifyφy|φV¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV
136 135 a1d ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬¬yifyφy|φVyV¬yV¬¬yφyifyφy|φVyV¬yφyifyφy|φV¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV
137 134 136 cnf2dd ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬¬yifyφy|φVyV¬yV¬¬yφyifyφy|φVyV¬yφyifyφy|φV
138 133 137 contrd ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬yifyφy|φVyV¬yV
139 138 a1d ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬¬yifyφy|φVyV¬yV
140 115 139 cnfn1dd ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV¬¬yV
141 110 140 contrd ¬¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV
142 141 efald2 ¬yφyV¬yφyifyφy|φVyV¬yφyifyφy|φV
143 101 142 ax-mp ¬yφyifyφy|φVyV¬yφyifyφy|φV
144 13 143 ax-mp ¬yφyifyφy|φV
145 ax-1 ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ
146 tsim3 ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬¬yφy=fxyifyφy|φVyφψ¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ
147 146 a1d ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬¬¬yφy=fxyifyφy|φVyφψ¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ
148 145 147 cnf2dd ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬¬¬yφy=fxyifyφy|φVyφψ
149 tsim2 ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬yφ¬yφy=fxyifyφy|φVyφψ
150 149 a1d ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬¬yφ¬yφy=fxyifyφy|φVyφψ
151 148 150 cnf2dd ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬¬yφ
152 tsim2 ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬yφyifyφy|φV¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ
153 152 a1d ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬¬yφyifyφy|φV¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ
154 145 153 cnf2dd ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬¬yφyifyφy|φV
155 151 154 mpdd ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬yifyφy|φV
156 id ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ
157 id ¬yφψ¬yφψ
158 157 a1i ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬yφψ¬yφψ
159 tsim2 ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψyφyφψ
160 159 a1d ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬yφψyφyφψ
161 158 160 cnf2dd ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬yφψyφ
162 149 a1d ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬yφψ¬yφ¬yφy=fxyifyφy|φVyφψ
163 161 162 cnfn1dd ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬yφψ¬yφy=fxyifyφy|φVyφψ
164 163 a1dd ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬yφψ¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ
165 156 164 mt3d ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψyφψ
166 165 a1d ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬yφψ
167 tsim3 ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬y=fxyifyφy|φVyφψ¬yφy=fxyifyφy|φVyφψ
168 167 a1d ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬¬y=fxyifyφy|φVyφψ¬yφy=fxyifyφy|φVyφψ
169 148 168 cnf2dd ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬¬y=fxyifyφy|φVyφψ
170 tsim3 ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬yifyφy|φVyφψy=fxyifyφy|φVyφψ
171 170 a1d ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬¬yifyφy|φVyφψy=fxyifyφy|φVyφψ
172 169 171 cnf2dd ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬¬yifyφy|φVyφψ
173 tsbi1 ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬yifyφy|φV¬yφψyifyφy|φVyφψ
174 173 a1d ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬¬yifyφy|φV¬yφψyifyφy|φVyφψ
175 172 174 cnf2dd ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬¬yifyφy|φV¬yφψ
176 166 175 cnfn2dd ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬¬yifyφy|φV
177 trud ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ
178 177 a1d ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬
179 tsbi3 ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψyifyφy|φV¬¬yifyφy|φV
180 179 a1d ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬yifyφy|φV¬¬yifyφy|φV
181 180 or32dd ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬yifyφy|φV¬yifyφy|φV¬
182 178 181 cnfn2dd ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬yifyφy|φV¬yifyφy|φV
183 176 182 cnf1dd ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ¬¬yifyφy|φV
184 155 183 contrd ¬¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ
185 184 efald2 ¬yφyifyφy|φV¬yφy=fxyifyφy|φVyφψ
186 144 185 ax-mp ¬yφy=fxyifyφy|φVyφψ
187 100 186 pm2.61i y=fxyifyφy|φVyφψ
188 19 2 187 ac6s3f xAyyifyφy|φVfxAyφψ
189 17 188 ax-mp fxAyφψ