Metamath Proof Explorer


Theorem acsfiel

Description: A set is closed in an algebraic closure system iff it contains all closures of finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015)

Ref Expression
Hypothesis isacs2.f F = mrCls C
Assertion acsfiel C ACS X S C S X y 𝒫 S Fin F y S

Proof

Step Hyp Ref Expression
1 isacs2.f F = mrCls C
2 acsmre C ACS X C Moore X
3 mress C Moore X S C S X
4 2 3 sylan C ACS X S C S X
5 4 ex C ACS X S C S X
6 5 pm4.71rd C ACS X S C S X S C
7 eleq1 s = S s C S C
8 pweq s = S 𝒫 s = 𝒫 S
9 8 ineq1d s = S 𝒫 s Fin = 𝒫 S Fin
10 sseq2 s = S F y s F y S
11 9 10 raleqbidv s = S y 𝒫 s Fin F y s y 𝒫 S Fin F y S
12 7 11 bibi12d s = S s C y 𝒫 s Fin F y s S C y 𝒫 S Fin F y S
13 1 isacs2 C ACS X C Moore X s 𝒫 X s C y 𝒫 s Fin F y s
14 13 simprbi C ACS X s 𝒫 X s C y 𝒫 s Fin F y s
15 14 adantr C ACS X S X s 𝒫 X s C y 𝒫 s Fin F y s
16 elfvdm C ACS X X dom ACS
17 elpw2g X dom ACS S 𝒫 X S X
18 16 17 syl C ACS X S 𝒫 X S X
19 18 biimpar C ACS X S X S 𝒫 X
20 12 15 19 rspcdva C ACS X S X S C y 𝒫 S Fin F y S
21 20 pm5.32da C ACS X S X S C S X y 𝒫 S Fin F y S
22 6 21 bitrd C ACS X S C S X y 𝒫 S Fin F y S