Metamath Proof Explorer


Theorem addcanpr

Description: Addition cancellation law for positive reals. Proposition 9-3.5(vi) of Gleason p. 123. (Contributed by NM, 9-Apr-1996) (New usage is discouraged.)

Ref Expression
Assertion addcanpr A 𝑷 B 𝑷 A + 𝑷 B = A + 𝑷 C B = C

Proof

Step Hyp Ref Expression
1 addclpr A 𝑷 B 𝑷 A + 𝑷 B 𝑷
2 eleq1 A + 𝑷 B = A + 𝑷 C A + 𝑷 B 𝑷 A + 𝑷 C 𝑷
3 dmplp dom + 𝑷 = 𝑷 × 𝑷
4 0npr ¬ 𝑷
5 3 4 ndmovrcl A + 𝑷 C 𝑷 A 𝑷 C 𝑷
6 2 5 syl6bi A + 𝑷 B = A + 𝑷 C A + 𝑷 B 𝑷 A 𝑷 C 𝑷
7 1 6 syl5com A 𝑷 B 𝑷 A + 𝑷 B = A + 𝑷 C A 𝑷 C 𝑷
8 ltapr A 𝑷 B < 𝑷 C A + 𝑷 B < 𝑷 A + 𝑷 C
9 ltapr A 𝑷 C < 𝑷 B A + 𝑷 C < 𝑷 A + 𝑷 B
10 8 9 orbi12d A 𝑷 B < 𝑷 C C < 𝑷 B A + 𝑷 B < 𝑷 A + 𝑷 C A + 𝑷 C < 𝑷 A + 𝑷 B
11 10 notbid A 𝑷 ¬ B < 𝑷 C C < 𝑷 B ¬ A + 𝑷 B < 𝑷 A + 𝑷 C A + 𝑷 C < 𝑷 A + 𝑷 B
12 11 ad2antrr A 𝑷 B 𝑷 A 𝑷 C 𝑷 ¬ B < 𝑷 C C < 𝑷 B ¬ A + 𝑷 B < 𝑷 A + 𝑷 C A + 𝑷 C < 𝑷 A + 𝑷 B
13 ltsopr < 𝑷 Or 𝑷
14 sotrieq < 𝑷 Or 𝑷 B 𝑷 C 𝑷 B = C ¬ B < 𝑷 C C < 𝑷 B
15 13 14 mpan B 𝑷 C 𝑷 B = C ¬ B < 𝑷 C C < 𝑷 B
16 15 ad2ant2l A 𝑷 B 𝑷 A 𝑷 C 𝑷 B = C ¬ B < 𝑷 C C < 𝑷 B
17 addclpr A 𝑷 C 𝑷 A + 𝑷 C 𝑷
18 sotrieq < 𝑷 Or 𝑷 A + 𝑷 B 𝑷 A + 𝑷 C 𝑷 A + 𝑷 B = A + 𝑷 C ¬ A + 𝑷 B < 𝑷 A + 𝑷 C A + 𝑷 C < 𝑷 A + 𝑷 B
19 13 18 mpan A + 𝑷 B 𝑷 A + 𝑷 C 𝑷 A + 𝑷 B = A + 𝑷 C ¬ A + 𝑷 B < 𝑷 A + 𝑷 C A + 𝑷 C < 𝑷 A + 𝑷 B
20 1 17 19 syl2an A 𝑷 B 𝑷 A 𝑷 C 𝑷 A + 𝑷 B = A + 𝑷 C ¬ A + 𝑷 B < 𝑷 A + 𝑷 C A + 𝑷 C < 𝑷 A + 𝑷 B
21 12 16 20 3bitr4d A 𝑷 B 𝑷 A 𝑷 C 𝑷 B = C A + 𝑷 B = A + 𝑷 C
22 21 exbiri A 𝑷 B 𝑷 A 𝑷 C 𝑷 A + 𝑷 B = A + 𝑷 C B = C
23 7 22 syld A 𝑷 B 𝑷 A + 𝑷 B = A + 𝑷 C A + 𝑷 B = A + 𝑷 C B = C
24 23 pm2.43d A 𝑷 B 𝑷 A + 𝑷 B = A + 𝑷 C B = C