Metamath Proof Explorer


Theorem addnidpi

Description: There is no identity element for addition on positive integers. (Contributed by NM, 28-Nov-1995) (New usage is discouraged.)

Ref Expression
Assertion addnidpi A𝑵¬A+𝑵B=A

Proof

Step Hyp Ref Expression
1 pinn A𝑵Aω
2 elni2 B𝑵BωB
3 nnaordi BωAωBA+𝑜A+𝑜B
4 nna0 AωA+𝑜=A
5 4 eleq1d AωA+𝑜A+𝑜BAA+𝑜B
6 nnord AωOrdA
7 ordirr OrdA¬AA
8 6 7 syl Aω¬AA
9 eleq2 A+𝑜B=AAA+𝑜BAA
10 9 notbid A+𝑜B=A¬AA+𝑜B¬AA
11 8 10 syl5ibrcom AωA+𝑜B=A¬AA+𝑜B
12 11 con2d AωAA+𝑜B¬A+𝑜B=A
13 5 12 sylbid AωA+𝑜A+𝑜B¬A+𝑜B=A
14 13 adantl BωAωA+𝑜A+𝑜B¬A+𝑜B=A
15 3 14 syld BωAωB¬A+𝑜B=A
16 15 expcom AωBωB¬A+𝑜B=A
17 16 imp32 AωBωB¬A+𝑜B=A
18 2 17 sylan2b AωB𝑵¬A+𝑜B=A
19 1 18 sylan A𝑵B𝑵¬A+𝑜B=A
20 addpiord A𝑵B𝑵A+𝑵B=A+𝑜B
21 20 eqeq1d A𝑵B𝑵A+𝑵B=AA+𝑜B=A
22 19 21 mtbird A𝑵B𝑵¬A+𝑵B=A
23 22 a1d A𝑵B𝑵A𝑵¬A+𝑵B=A
24 dmaddpi dom+𝑵=𝑵×𝑵
25 24 ndmov ¬A𝑵B𝑵A+𝑵B=
26 25 eqeq1d ¬A𝑵B𝑵A+𝑵B=A=A
27 0npi ¬𝑵
28 eleq1 =A𝑵A𝑵
29 27 28 mtbii =A¬A𝑵
30 26 29 syl6bi ¬A𝑵B𝑵A+𝑵B=A¬A𝑵
31 30 con2d ¬A𝑵B𝑵A𝑵¬A+𝑵B=A
32 23 31 pm2.61i A𝑵¬A+𝑵B=A