Metamath Proof Explorer


Theorem addsproplem5

Description: Lemma for surreal addition properties. Show the second half of the inductive hypothesis when Z is older than Y . (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Hypotheses addsproplem.1 No typesetting found for |- ( ph -> A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x )
addspropord.2 φXNo
addspropord.3 φYNo
addspropord.4 φZNo
addspropord.5 φY<sZ
addsproplem5.6 φbdayZbdayY
Assertion addsproplem5 Could not format assertion : No typesetting found for |- ( ph -> ( Y +s X )

Proof

Step Hyp Ref Expression
1 addsproplem.1 Could not format ( ph -> A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x ) A. x e. No A. y e. No A. z e. No ( ( ( ( bday ` x ) +no ( bday ` y ) ) u. ( ( bday ` x ) +no ( bday ` z ) ) ) e. ( ( ( bday ` X ) +no ( bday ` Y ) ) u. ( ( bday ` X ) +no ( bday ` Z ) ) ) -> ( ( x +s y ) e. No /\ ( y ( y +s x )
2 addspropord.2 φXNo
3 addspropord.3 φYNo
4 addspropord.4 φZNo
5 addspropord.5 φY<sZ
6 addsproplem5.6 φbdayZbdayY
7 1 2 3 addsproplem3 Could not format ( ph -> ( ( X +s Y ) e. No /\ ( { e | E. f e. ( _Left ` X ) e = ( f +s Y ) } u. { g | E. h e. ( _Left ` Y ) g = ( X +s h ) } ) < ( ( X +s Y ) e. No /\ ( { e | E. f e. ( _Left ` X ) e = ( f +s Y ) } u. { g | E. h e. ( _Left ` Y ) g = ( X +s h ) } ) <
8 7 simp3d Could not format ( ph -> { ( X +s Y ) } < { ( X +s Y ) } <
9 ovex Could not format ( X +s Y ) e. _V : No typesetting found for |- ( X +s Y ) e. _V with typecode |-
10 9 snid Could not format ( X +s Y ) e. { ( X +s Y ) } : No typesetting found for |- ( X +s Y ) e. { ( X +s Y ) } with typecode |-
11 10 a1i Could not format ( ph -> ( X +s Y ) e. { ( X +s Y ) } ) : No typesetting found for |- ( ph -> ( X +s Y ) e. { ( X +s Y ) } ) with typecode |-
12 bdayelon bdayYOn
13 oldbday bdayYOnZNoZOldbdayYbdayZbdayY
14 12 4 13 sylancr φZOldbdayYbdayZbdayY
15 6 14 mpbird φZOldbdayY
16 breq2 z=ZY<szY<sZ
17 rightval Could not format ( _Right ` Y ) = { z e. ( _Old ` ( bday ` Y ) ) | Y
18 16 17 elrab2 Could not format ( Z e. ( _Right ` Y ) <-> ( Z e. ( _Old ` ( bday ` Y ) ) /\ Y ( Z e. ( _Old ` ( bday ` Y ) ) /\ Y
19 15 5 18 sylanbrc Could not format ( ph -> Z e. ( _Right ` Y ) ) : No typesetting found for |- ( ph -> Z e. ( _Right ` Y ) ) with typecode |-
20 eqid Could not format ( X +s Z ) = ( X +s Z ) : No typesetting found for |- ( X +s Z ) = ( X +s Z ) with typecode |-
21 oveq2 Could not format ( d = Z -> ( X +s d ) = ( X +s Z ) ) : No typesetting found for |- ( d = Z -> ( X +s d ) = ( X +s Z ) ) with typecode |-
22 21 rspceeqv Could not format ( ( Z e. ( _Right ` Y ) /\ ( X +s Z ) = ( X +s Z ) ) -> E. d e. ( _Right ` Y ) ( X +s Z ) = ( X +s d ) ) : No typesetting found for |- ( ( Z e. ( _Right ` Y ) /\ ( X +s Z ) = ( X +s Z ) ) -> E. d e. ( _Right ` Y ) ( X +s Z ) = ( X +s d ) ) with typecode |-
23 19 20 22 sylancl Could not format ( ph -> E. d e. ( _Right ` Y ) ( X +s Z ) = ( X +s d ) ) : No typesetting found for |- ( ph -> E. d e. ( _Right ` Y ) ( X +s Z ) = ( X +s d ) ) with typecode |-
24 ovex Could not format ( X +s Z ) e. _V : No typesetting found for |- ( X +s Z ) e. _V with typecode |-
25 eqeq1 Could not format ( b = ( X +s Z ) -> ( b = ( X +s d ) <-> ( X +s Z ) = ( X +s d ) ) ) : No typesetting found for |- ( b = ( X +s Z ) -> ( b = ( X +s d ) <-> ( X +s Z ) = ( X +s d ) ) ) with typecode |-
26 25 rexbidv Could not format ( b = ( X +s Z ) -> ( E. d e. ( _Right ` Y ) b = ( X +s d ) <-> E. d e. ( _Right ` Y ) ( X +s Z ) = ( X +s d ) ) ) : No typesetting found for |- ( b = ( X +s Z ) -> ( E. d e. ( _Right ` Y ) b = ( X +s d ) <-> E. d e. ( _Right ` Y ) ( X +s Z ) = ( X +s d ) ) ) with typecode |-
27 24 26 elab Could not format ( ( X +s Z ) e. { b | E. d e. ( _Right ` Y ) b = ( X +s d ) } <-> E. d e. ( _Right ` Y ) ( X +s Z ) = ( X +s d ) ) : No typesetting found for |- ( ( X +s Z ) e. { b | E. d e. ( _Right ` Y ) b = ( X +s d ) } <-> E. d e. ( _Right ` Y ) ( X +s Z ) = ( X +s d ) ) with typecode |-
28 23 27 sylibr Could not format ( ph -> ( X +s Z ) e. { b | E. d e. ( _Right ` Y ) b = ( X +s d ) } ) : No typesetting found for |- ( ph -> ( X +s Z ) e. { b | E. d e. ( _Right ` Y ) b = ( X +s d ) } ) with typecode |-
29 elun2 Could not format ( ( X +s Z ) e. { b | E. d e. ( _Right ` Y ) b = ( X +s d ) } -> ( X +s Z ) e. ( { a | E. c e. ( _Right ` X ) a = ( c +s Y ) } u. { b | E. d e. ( _Right ` Y ) b = ( X +s d ) } ) ) : No typesetting found for |- ( ( X +s Z ) e. { b | E. d e. ( _Right ` Y ) b = ( X +s d ) } -> ( X +s Z ) e. ( { a | E. c e. ( _Right ` X ) a = ( c +s Y ) } u. { b | E. d e. ( _Right ` Y ) b = ( X +s d ) } ) ) with typecode |-
30 28 29 syl Could not format ( ph -> ( X +s Z ) e. ( { a | E. c e. ( _Right ` X ) a = ( c +s Y ) } u. { b | E. d e. ( _Right ` Y ) b = ( X +s d ) } ) ) : No typesetting found for |- ( ph -> ( X +s Z ) e. ( { a | E. c e. ( _Right ` X ) a = ( c +s Y ) } u. { b | E. d e. ( _Right ` Y ) b = ( X +s d ) } ) ) with typecode |-
31 8 11 30 ssltsepcd Could not format ( ph -> ( X +s Y ) ( X +s Y )
32 3 2 addscomd Could not format ( ph -> ( Y +s X ) = ( X +s Y ) ) : No typesetting found for |- ( ph -> ( Y +s X ) = ( X +s Y ) ) with typecode |-
33 4 2 addscomd Could not format ( ph -> ( Z +s X ) = ( X +s Z ) ) : No typesetting found for |- ( ph -> ( Z +s X ) = ( X +s Z ) ) with typecode |-
34 31 32 33 3brtr4d Could not format ( ph -> ( Y +s X ) ( Y +s X )