Description: For each complex number C , there is no unique complex number a added to the square of another complex number b resulting in the given complex number C . (Contributed by AV, 2-Jul-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | addsq2nreurex | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2cnm | |
|
2 | id | |
|
3 | 4cn | |
|
4 | 3 | a1i | |
5 | 2 4 | subcld | |
6 | 1cnd | |
|
7 | 1re | |
|
8 | 1lt4 | |
|
9 | 7 8 | ltneii | |
10 | 9 | a1i | |
11 | 2 6 4 10 | subneintrd | |
12 | oveq1 | |
|
13 | 12 | oveq2d | |
14 | 13 | eqeq1d | |
15 | 14 | adantl | |
16 | sq1 | |
|
17 | 16 | oveq2i | |
18 | npcan1 | |
|
19 | 17 18 | eqtrid | |
20 | 6 15 19 | rspcedvd | |
21 | 2cnd | |
|
22 | oveq1 | |
|
23 | 22 | oveq2d | |
24 | 23 | eqeq1d | |
25 | 24 | adantl | |
26 | 2cn | |
|
27 | 26 | sqcli | |
28 | 27 | a1i | |
29 | 2 4 28 | subadd23d | |
30 | sq2 | |
|
31 | 30 | a1i | |
32 | 28 31 | subeq0bd | |
33 | 27 3 | subcli | |
34 | addid0 | |
|
35 | 33 34 | mpan2 | |
36 | 32 35 | mpbird | |
37 | 29 36 | eqtrd | |
38 | 21 25 37 | rspcedvd | |
39 | oveq1 | |
|
40 | 39 | eqeq1d | |
41 | 40 | rexbidv | |
42 | oveq1 | |
|
43 | 42 | eqeq1d | |
44 | 43 | rexbidv | |
45 | 41 44 | 2nreu | |
46 | 45 | imp | |
47 | 1 5 11 20 38 46 | syl32anc | |