Metamath Proof Explorer


Theorem afvelrnb

Description: A member of a function's range is a value of the function, analogous to fvelrnb with the additional requirement that the member must be a set. (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvelrnb FFnABVBranFxAF'''x=B

Proof

Step Hyp Ref Expression
1 fnrnafv FFnAranF=y|xAy=F'''x
2 1 adantr FFnABVranF=y|xAy=F'''x
3 2 eleq2d FFnABVBranFBy|xAy=F'''x
4 eqeq1 y=By=F'''xB=F'''x
5 eqcom B=F'''xF'''x=B
6 4 5 bitrdi y=By=F'''xF'''x=B
7 6 rexbidv y=BxAy=F'''xxAF'''x=B
8 7 elabg BVBy|xAy=F'''xxAF'''x=B
9 8 adantl FFnABVBy|xAy=F'''xxAF'''x=B
10 3 9 bitrd FFnABVBranFxAF'''x=B