Metamath Proof Explorer


Theorem afvpcfv0

Description: If the value of the alternative function at an argument is the universe, the function's value at this argument is the empty set. (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion afvpcfv0 F'''A=VFA=

Proof

Step Hyp Ref Expression
1 dfafv2 F'''A=ifFdefAtAFAV
2 1 eqeq1i F'''A=VifFdefAtAFAV=V
3 eqcom ifFdefAtAFAV=VV=ifFdefAtAFAV
4 eqif V=ifFdefAtAFAVFdefAtAV=FA¬FdefAtAV=V
5 3 4 bitri ifFdefAtAFAV=VFdefAtAV=FA¬FdefAtAV=V
6 fveqvfvv FA=VFA=
7 6 eqcoms V=FAFA=
8 7 adantl FdefAtAV=FAFA=
9 fvfundmfvn0 FAAdomFFunFA
10 df-dfat FdefAtAAdomFFunFA
11 9 10 sylibr FAFdefAtA
12 11 necon1bi ¬FdefAtAFA=
13 12 adantr ¬FdefAtAV=VFA=
14 8 13 jaoi FdefAtAV=FA¬FdefAtAV=VFA=
15 5 14 sylbi ifFdefAtAFAV=VFA=
16 2 15 sylbi F'''A=VFA=