| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1c7.1 |
|
| 2 |
|
aks6d1c7.2 |
|
| 3 |
|
aks6d1c7.3 |
|
| 4 |
|
aks6d1c7.4 |
|
| 5 |
|
aks6d1c7.5 |
|
| 6 |
|
aks6d1c7.6 |
|
| 7 |
|
aks6d1c7.7 |
|
| 8 |
|
aks6d1c7.8 |
|
| 9 |
|
aks6d1c7.9 |
|
| 10 |
|
aks6d1c7.10 |
|
| 11 |
|
aks6d1c7.11 |
|
| 12 |
|
aks6d1c7.12 |
|
| 13 |
|
aks6d1c7.13 |
|
| 14 |
|
aks6d1c7.14 |
|
| 15 |
|
aks6d1c7lem3.1 |
|
| 16 |
|
nfcv |
|
| 17 |
|
nfcv |
|
| 18 |
|
nfcv |
|
| 19 |
|
nfcv |
|
| 20 |
|
simpl |
|
| 21 |
20
|
oveq2d |
|
| 22 |
|
simpr |
|
| 23 |
22
|
oveq2d |
|
| 24 |
21 23
|
oveq12d |
|
| 25 |
16 17 18 19 24
|
cbvmpo |
|
| 26 |
|
eqid |
|
| 27 |
|
eqid |
|
| 28 |
|
nfcv |
|
| 29 |
|
nfcv |
|
| 30 |
|
2fveq3 |
|
| 31 |
30
|
fveq1d |
|
| 32 |
28 29 31
|
cbvmpt |
|
| 33 |
|
eqid |
|
| 34 |
|
eqid |
|
| 35 |
|
nfcv |
|
| 36 |
|
nfcv |
|
| 37 |
|
nfcv |
|
| 38 |
|
nfcv |
|
| 39 |
|
fveq2 |
|
| 40 |
|
2fveq3 |
|
| 41 |
40
|
oveq2d |
|
| 42 |
39 41
|
oveq12d |
|
| 43 |
37 38 42
|
cbvmpt |
|
| 44 |
43
|
a1i |
|
| 45 |
|
simpl |
|
| 46 |
45
|
fveq1d |
|
| 47 |
46
|
oveq1d |
|
| 48 |
47
|
mpteq2dva |
|
| 49 |
44 48
|
eqtrd |
|
| 50 |
49
|
oveq2d |
|
| 51 |
35 36 50
|
cbvmpt |
|
| 52 |
|
nfcv |
|
| 53 |
|
nfcv |
|
| 54 |
|
nfv |
|
| 55 |
|
nfv |
|
| 56 |
|
simpl |
|
| 57 |
56
|
fveq1d |
|
| 58 |
57
|
sumeq2dv |
|
| 59 |
|
fveq2 |
|
| 60 |
|
nfcv |
|
| 61 |
|
nfcv |
|
| 62 |
59 60 61
|
cbvsum |
|
| 63 |
62
|
a1i |
|
| 64 |
58 63
|
eqtrd |
|
| 65 |
25
|
eqcomi |
|
| 66 |
65
|
a1i |
|
| 67 |
66
|
imaeq1d |
|
| 68 |
67
|
imaeq2d |
|
| 69 |
68
|
fveq2d |
|
| 70 |
69
|
oveq1d |
|
| 71 |
64 70
|
breq12d |
|
| 72 |
52 53 54 55 71
|
cbvrabw |
|
| 73 |
1 2 3 4 5 6 7 8 25 26 27 9 10 11 12 32 33 34 15 13 51 14 72
|
aks6d1c7lem2 |
|