Description: Strict ordering property of the aleph function. (Contributed by Mario Carneiro, 2-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | alephordi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 | |
|
2 | fveq2 | |
|
3 | 2 | breq2d | |
4 | 1 3 | imbi12d | |
5 | eleq2 | |
|
6 | fveq2 | |
|
7 | 6 | breq2d | |
8 | 5 7 | imbi12d | |
9 | eleq2 | |
|
10 | fveq2 | |
|
11 | 10 | breq2d | |
12 | 9 11 | imbi12d | |
13 | eleq2 | |
|
14 | fveq2 | |
|
15 | 14 | breq2d | |
16 | 13 15 | imbi12d | |
17 | noel | |
|
18 | 17 | pm2.21i | |
19 | vex | |
|
20 | 19 | elsuc2 | |
21 | alephordilem1 | |
|
22 | sdomtr | |
|
23 | 21 22 | sylan2 | |
24 | 23 | expcom | |
25 | 24 | imim2d | |
26 | 25 | com23 | |
27 | fveq2 | |
|
28 | 27 | breq1d | |
29 | 21 28 | imbitrrid | |
30 | 29 | a1d | |
31 | 30 | com3r | |
32 | 26 31 | jaod | |
33 | 20 32 | biimtrid | |
34 | 33 | com23 | |
35 | fvexd | |
|
36 | fveq2 | |
|
37 | 36 | ssiun2s | |
38 | vex | |
|
39 | alephlim | |
|
40 | 38 39 | mpan | |
41 | 40 | sseq2d | |
42 | 37 41 | imbitrrid | |
43 | ssdomg | |
|
44 | 35 42 43 | sylsyld | |
45 | limsuc | |
|
46 | fveq2 | |
|
47 | 46 | ssiun2s | |
48 | 40 | sseq2d | |
49 | 47 48 | imbitrrid | |
50 | ssdomg | |
|
51 | 35 49 50 | sylsyld | |
52 | 45 51 | sylbid | |
53 | 52 | imp | |
54 | domnsym | |
|
55 | 53 54 | syl | |
56 | limelon | |
|
57 | 38 56 | mpan | |
58 | onelon | |
|
59 | 57 58 | sylan | |
60 | ensym | |
|
61 | alephordilem1 | |
|
62 | ensdomtr | |
|
63 | 62 | ex | |
64 | 60 61 63 | syl2im | |
65 | 59 64 | syl5com | |
66 | 55 65 | mtod | |
67 | 66 | ex | |
68 | 44 67 | jcad | |
69 | brsdom | |
|
70 | 68 69 | syl6ibr | |
71 | 70 | a1d | |
72 | 4 8 12 16 18 34 71 | tfinds | |