Metamath Proof Explorer


Theorem alephordi

Description: Strict ordering property of the aleph function. (Contributed by Mario Carneiro, 2-Feb-2013)

Ref Expression
Assertion alephordi BOnABAB

Proof

Step Hyp Ref Expression
1 eleq2 x=AxA
2 fveq2 x=x=
3 2 breq2d x=AxA
4 1 3 imbi12d x=AxAxAA
5 eleq2 x=yAxAy
6 fveq2 x=yx=y
7 6 breq2d x=yAxAy
8 5 7 imbi12d x=yAxAxAyAy
9 eleq2 x=sucyAxAsucy
10 fveq2 x=sucyx=sucy
11 10 breq2d x=sucyAxAsucy
12 9 11 imbi12d x=sucyAxAxAsucyAsucy
13 eleq2 x=BAxAB
14 fveq2 x=Bx=B
15 14 breq2d x=BAxAB
16 13 15 imbi12d x=BAxAxABAB
17 noel ¬A
18 17 pm2.21i AA
19 vex yV
20 19 elsuc2 AsucyAyA=y
21 alephordilem1 yOnysucy
22 sdomtr AyysucyAsucy
23 21 22 sylan2 AyyOnAsucy
24 23 expcom yOnAyAsucy
25 24 imim2d yOnAyAyAyAsucy
26 25 com23 yOnAyAyAyAsucy
27 fveq2 A=yA=y
28 27 breq1d A=yAsucyysucy
29 21 28 imbitrrid A=yyOnAsucy
30 29 a1d A=yAyAyyOnAsucy
31 30 com3r yOnA=yAyAyAsucy
32 26 31 jaod yOnAyA=yAyAyAsucy
33 20 32 biimtrid yOnAsucyAyAyAsucy
34 33 com23 yOnAyAyAsucyAsucy
35 fvexd LimxxV
36 fveq2 w=Aw=A
37 36 ssiun2s AxAwxw
38 vex xV
39 alephlim xVLimxx=wxw
40 38 39 mpan Limxx=wxw
41 40 sseq2d LimxAxAwxw
42 37 41 imbitrrid LimxAxAx
43 ssdomg xVAxAx
44 35 42 43 sylsyld LimxAxAx
45 limsuc LimxAxsucAx
46 fveq2 w=sucAw=sucA
47 46 ssiun2s sucAxsucAwxw
48 40 sseq2d LimxsucAxsucAwxw
49 47 48 imbitrrid LimxsucAxsucAx
50 ssdomg xVsucAxsucAx
51 35 49 50 sylsyld LimxsucAxsucAx
52 45 51 sylbid LimxAxsucAx
53 52 imp LimxAxsucAx
54 domnsym sucAx¬xsucA
55 53 54 syl LimxAx¬xsucA
56 limelon xVLimxxOn
57 38 56 mpan LimxxOn
58 onelon xOnAxAOn
59 57 58 sylan LimxAxAOn
60 ensym AxxA
61 alephordilem1 AOnAsucA
62 ensdomtr xAAsucAxsucA
63 62 ex xAAsucAxsucA
64 60 61 63 syl2im AxAOnxsucA
65 59 64 syl5com LimxAxAxxsucA
66 55 65 mtod LimxAx¬Ax
67 66 ex LimxAx¬Ax
68 44 67 jcad LimxAxAx¬Ax
69 brsdom AxAx¬Ax
70 68 69 syl6ibr LimxAxAx
71 70 a1d LimxyxAyAyAxAx
72 4 8 12 16 18 34 71 tfinds BOnABAB