| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eleq2 |  | 
						
							| 2 |  | fveq2 |  | 
						
							| 3 | 2 | breq2d |  | 
						
							| 4 | 1 3 | imbi12d |  | 
						
							| 5 |  | eleq2 |  | 
						
							| 6 |  | fveq2 |  | 
						
							| 7 | 6 | breq2d |  | 
						
							| 8 | 5 7 | imbi12d |  | 
						
							| 9 |  | eleq2 |  | 
						
							| 10 |  | fveq2 |  | 
						
							| 11 | 10 | breq2d |  | 
						
							| 12 | 9 11 | imbi12d |  | 
						
							| 13 |  | eleq2 |  | 
						
							| 14 |  | fveq2 |  | 
						
							| 15 | 14 | breq2d |  | 
						
							| 16 | 13 15 | imbi12d |  | 
						
							| 17 |  | noel |  | 
						
							| 18 | 17 | pm2.21i |  | 
						
							| 19 |  | vex |  | 
						
							| 20 | 19 | elsuc2 |  | 
						
							| 21 |  | alephordilem1 |  | 
						
							| 22 |  | sdomtr |  | 
						
							| 23 | 21 22 | sylan2 |  | 
						
							| 24 | 23 | expcom |  | 
						
							| 25 | 24 | imim2d |  | 
						
							| 26 | 25 | com23 |  | 
						
							| 27 |  | fveq2 |  | 
						
							| 28 | 27 | breq1d |  | 
						
							| 29 | 21 28 | imbitrrid |  | 
						
							| 30 | 29 | a1d |  | 
						
							| 31 | 30 | com3r |  | 
						
							| 32 | 26 31 | jaod |  | 
						
							| 33 | 20 32 | biimtrid |  | 
						
							| 34 | 33 | com23 |  | 
						
							| 35 |  | fvexd |  | 
						
							| 36 |  | fveq2 |  | 
						
							| 37 | 36 | ssiun2s |  | 
						
							| 38 |  | vex |  | 
						
							| 39 |  | alephlim |  | 
						
							| 40 | 38 39 | mpan |  | 
						
							| 41 | 40 | sseq2d |  | 
						
							| 42 | 37 41 | imbitrrid |  | 
						
							| 43 |  | ssdomg |  | 
						
							| 44 | 35 42 43 | sylsyld |  | 
						
							| 45 |  | limsuc |  | 
						
							| 46 |  | fveq2 |  | 
						
							| 47 | 46 | ssiun2s |  | 
						
							| 48 | 40 | sseq2d |  | 
						
							| 49 | 47 48 | imbitrrid |  | 
						
							| 50 |  | ssdomg |  | 
						
							| 51 | 35 49 50 | sylsyld |  | 
						
							| 52 | 45 51 | sylbid |  | 
						
							| 53 | 52 | imp |  | 
						
							| 54 |  | domnsym |  | 
						
							| 55 | 53 54 | syl |  | 
						
							| 56 |  | limelon |  | 
						
							| 57 | 38 56 | mpan |  | 
						
							| 58 |  | onelon |  | 
						
							| 59 | 57 58 | sylan |  | 
						
							| 60 |  | ensym |  | 
						
							| 61 |  | alephordilem1 |  | 
						
							| 62 |  | ensdomtr |  | 
						
							| 63 | 62 | ex |  | 
						
							| 64 | 60 61 63 | syl2im |  | 
						
							| 65 | 59 64 | syl5com |  | 
						
							| 66 | 55 65 | mtod |  | 
						
							| 67 | 66 | ex |  | 
						
							| 68 | 44 67 | jcad |  | 
						
							| 69 |  | brsdom |  | 
						
							| 70 | 68 69 | imbitrrdi |  | 
						
							| 71 | 70 | a1d |  | 
						
							| 72 | 4 8 12 16 18 34 71 | tfinds |  |