Metamath Proof Explorer


Theorem allbutfi

Description: For all but finitely many. Some authors say "cofinitely many". Some authors say "ultimately". Compare with eliuniin and eliuniin2 (here, the precondition can be dropped; see eliuniincex ). (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses allbutfi.z Z=M
allbutfi.a A=nZmnB
Assertion allbutfi XAnZmnXB

Proof

Step Hyp Ref Expression
1 allbutfi.z Z=M
2 allbutfi.a A=nZmnB
3 2 eleq2i XAXnZmnB
4 3 biimpi XAXnZmnB
5 eliun XnZmnBnZXmnB
6 4 5 sylib XAnZXmnB
7 nfcv _nX
8 nfiu1 _nnZmnB
9 2 8 nfcxfr _nA
10 7 9 nfel nXA
11 eliin XAXmnBmnXB
12 11 biimpd XAXmnBmnXB
13 12 a1d XAnZXmnBmnXB
14 10 13 reximdai XAnZXmnBnZmnXB
15 6 14 mpd XAnZmnXB
16 simpr nZmnXBmnXB
17 1 eleq2i nZnM
18 17 biimpi nZnM
19 eluzelz nMn
20 uzid nnn
21 18 19 20 3syl nZnn
22 21 ne0d nZn
23 eliin2 nXmnBmnXB
24 22 23 syl nZXmnBmnXB
25 24 adantr nZmnXBXmnBmnXB
26 16 25 mpbird nZmnXBXmnB
27 26 ex nZmnXBXmnB
28 27 reximia nZmnXBnZXmnB
29 28 5 sylibr nZmnXBXnZmnB
30 29 2 eleqtrrdi nZmnXBXA
31 15 30 impbii XAnZmnXB