Metamath Proof Explorer


Theorem ang180

Description: The sum of angles m A B C + m B C A + m C A B in a triangle adds up to either _pi or -u _pi , i.e. 180 degrees. (The sign is due to the two possible orientations of vertex arrangement and our signed notion of angle). This is Metamath 100 proof #27. (Contributed by Mario Carneiro, 23-Sep-2014)

Ref Expression
Hypothesis ang.1 F=x0,y0logyx
Assertion ang180 ABCABBCACCBFAB+ACFBC+BAFCAππ

Proof

Step Hyp Ref Expression
1 ang.1 F=x0,y0logyx
2 simpl3 ABCABBCACC
3 simpl2 ABCABBCACB
4 2 3 subcld ABCABBCACCB
5 simpr2 ABCABBCACBC
6 5 necomd ABCABBCACCB
7 2 3 6 subne0d ABCABBCACCB0
8 simpl1 ABCABBCACA
9 8 3 subcld ABCABBCACAB
10 simpr1 ABCABBCACAB
11 8 3 10 subne0d ABCABBCACAB0
12 1 angneg CBCB0ABAB0CBFAB=CBFAB
13 4 7 9 11 12 syl22anc ABCABBCACCBFAB=CBFAB
14 2 3 negsubdi2d ABCABBCACCB=BC
15 3 2 8 nnncan2d ABCABBCACB-A-CA=BC
16 14 15 eqtr4d ABCABBCACCB=B-A-CA
17 8 3 negsubdi2d ABCABBCACAB=BA
18 16 17 oveq12d ABCABBCACCBFAB=B-A-CAFBA
19 13 18 eqtr3d ABCABBCACCBFAB=B-A-CAFBA
20 8 2 subcld ABCABBCACAC
21 simpr3 ABCABBCACAC
22 8 2 21 subne0d ABCABBCACAC0
23 3 2 subcld ABCABBCACBC
24 3 2 5 subne0d ABCABBCACBC0
25 1 angneg ACAC0BCBC0ACFBC=ACFBC
26 20 22 23 24 25 syl22anc ABCABBCACACFBC=ACFBC
27 8 2 negsubdi2d ABCABBCACAC=CA
28 3 2 negsubdi2d ABCABBCACBC=CB
29 2 3 8 nnncan2d ABCABBCACC-A-BA=CB
30 28 29 eqtr4d ABCABBCACBC=C-A-BA
31 27 30 oveq12d ABCABBCACACFBC=CAFC-A-BA
32 26 31 eqtr3d ABCABBCACACFBC=CAFC-A-BA
33 19 32 oveq12d ABCABBCACCBFAB+ACFBC=B-A-CAFBA+CAFC-A-BA
34 33 oveq1d ABCABBCACCBFAB+ACFBC+BAFCA=B-A-CAFBA+CAFC-A-BA+BAFCA
35 3 8 subcld ABCABBCACBA
36 10 necomd ABCABBCACBA
37 3 8 36 subne0d ABCABBCACBA0
38 2 8 subcld ABCABBCACCA
39 21 necomd ABCABBCACCA
40 2 8 39 subne0d ABCABBCACCA0
41 3 2 8 5 subneintr2d ABCABBCACBACA
42 1 ang180lem5 BABA0CACA0BACAB-A-CAFBA+CAFC-A-BA+BAFCAππ
43 35 37 38 40 41 42 syl221anc ABCABBCACB-A-CAFBA+CAFC-A-BA+BAFCAππ
44 34 43 eqeltrd ABCABBCACCBFAB+ACFBC+BAFCAππ