Description: The sum of angles m A B C + m B C A + m C A B in a triangle adds up to either _pi or -u _pi , i.e. 180 degrees. (The sign is due to the two possible orientations of vertex arrangement and our signed notion of angle). This is Metamath 100 proof #27. (Contributed by Mario Carneiro, 23-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ang.1 | |
|
Assertion | ang180 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ang.1 | |
|
2 | simpl3 | |
|
3 | simpl2 | |
|
4 | 2 3 | subcld | |
5 | simpr2 | |
|
6 | 5 | necomd | |
7 | 2 3 6 | subne0d | |
8 | simpl1 | |
|
9 | 8 3 | subcld | |
10 | simpr1 | |
|
11 | 8 3 10 | subne0d | |
12 | 1 | angneg | |
13 | 4 7 9 11 12 | syl22anc | |
14 | 2 3 | negsubdi2d | |
15 | 3 2 8 | nnncan2d | |
16 | 14 15 | eqtr4d | |
17 | 8 3 | negsubdi2d | |
18 | 16 17 | oveq12d | |
19 | 13 18 | eqtr3d | |
20 | 8 2 | subcld | |
21 | simpr3 | |
|
22 | 8 2 21 | subne0d | |
23 | 3 2 | subcld | |
24 | 3 2 5 | subne0d | |
25 | 1 | angneg | |
26 | 20 22 23 24 25 | syl22anc | |
27 | 8 2 | negsubdi2d | |
28 | 3 2 | negsubdi2d | |
29 | 2 3 8 | nnncan2d | |
30 | 28 29 | eqtr4d | |
31 | 27 30 | oveq12d | |
32 | 26 31 | eqtr3d | |
33 | 19 32 | oveq12d | |
34 | 33 | oveq1d | |
35 | 3 8 | subcld | |
36 | 10 | necomd | |
37 | 3 8 36 | subne0d | |
38 | 2 8 | subcld | |
39 | 21 | necomd | |
40 | 2 8 39 | subne0d | |
41 | 3 2 8 5 | subneintr2d | |
42 | 1 | ang180lem5 | |
43 | 35 37 38 40 41 42 | syl221anc | |
44 | 34 43 | eqeltrd | |