Metamath Proof Explorer


Theorem ang180lem4

Description: Lemma for ang180 . Reduce the statement to one variable. (Contributed by Mario Carneiro, 23-Sep-2014)

Ref Expression
Hypothesis ang.1 F=x0,y0logyx
Assertion ang180lem4 AA0A11AF1+AFA1+1FAππ

Proof

Step Hyp Ref Expression
1 ang.1 F=x0,y0logyx
2 1cnd AA0A11
3 simp1 AA0A1A
4 2 3 subcld AA0A11A
5 simp3 AA0A1A1
6 5 necomd AA0A11A
7 2 3 6 subne0d AA0A11A0
8 ax-1ne0 10
9 8 a1i AA0A110
10 1 4 7 2 9 angvald AA0A11AF1=log11A
11 simp2 AA0A1A0
12 3 2 subcld AA0A1A1
13 3 2 5 subne0d AA0A1A10
14 1 3 11 12 13 angvald AA0A1AFA1=logA1A
15 10 14 oveq12d AA0A11AF1+AFA1=log11A+logA1A
16 2 4 7 divcld AA0A111A
17 4 7 recne0d AA0A111A0
18 16 17 logcld AA0A1log11A
19 12 3 11 divcld AA0A1A1A
20 12 3 13 11 divne0d AA0A1A1A0
21 19 20 logcld AA0A1logA1A
22 18 21 imaddd AA0A1log11A+logA1A=log11A+logA1A
23 15 22 eqtr4d AA0A11AF1+AFA1=log11A+logA1A
24 1 2 9 3 11 angvald AA0A11FA=logA1
25 3 div1d AA0A1A1=A
26 25 fveq2d AA0A1logA1=logA
27 26 fveq2d AA0A1logA1=logA
28 24 27 eqtrd AA0A11FA=logA
29 23 28 oveq12d AA0A11AF1+AFA1+1FA=log11A+logA1A+logA
30 18 21 addcld AA0A1log11A+logA1A
31 3 11 logcld AA0A1logA
32 30 31 imaddd AA0A1log11A+logA1A+logA=log11A+logA1A+logA
33 29 32 eqtr4d AA0A11AF1+AFA1+1FA=log11A+logA1A+logA
34 eqid log11A+logA1A+logA=log11A+logA1A+logA
35 eqid log11A+logA1A+logAi2π12=log11A+logA1A+logAi2π12
36 1 34 35 ang180lem3 AA0A1log11A+logA1A+logAiπiπ
37 fveq2 log11A+logA1A+logA=iπlog11A+logA1A+logA=iπ
38 ax-icn i
39 picn π
40 38 39 mulcli iπ
41 40 imnegi iπ=iπ
42 40 addlidi 0+iπ=iπ
43 42 fveq2i 0+iπ=iπ
44 0re 0
45 pire π
46 44 45 crimi 0+iπ=π
47 43 46 eqtr3i iπ=π
48 47 negeqi iπ=π
49 41 48 eqtri iπ=π
50 37 49 eqtrdi log11A+logA1A+logA=iπlog11A+logA1A+logA=π
51 fveq2 log11A+logA1A+logA=iπlog11A+logA1A+logA=iπ
52 51 47 eqtrdi log11A+logA1A+logA=iπlog11A+logA1A+logA=π
53 50 52 orim12i log11A+logA1A+logA=iπlog11A+logA1A+logA=iπlog11A+logA1A+logA=πlog11A+logA1A+logA=π
54 ovex log11A+logA1A+logAV
55 54 elpr log11A+logA1A+logAiπiπlog11A+logA1A+logA=iπlog11A+logA1A+logA=iπ
56 fvex log11A+logA1A+logAV
57 56 elpr log11A+logA1A+logAππlog11A+logA1A+logA=πlog11A+logA1A+logA=π
58 53 55 57 3imtr4i log11A+logA1A+logAiπiπlog11A+logA1A+logAππ
59 36 58 syl AA0A1log11A+logA1A+logAππ
60 33 59 eqeltrd AA0A11AF1+AFA1+1FAππ