Metamath Proof Explorer


Theorem ang180lem3

Description: Lemma for ang180 . Since ang180lem1 shows that N is an integer and ang180lem2 shows that N is strictly between -u 2 and 1 , it follows that N e. { -u 1 , 0 } , and these two cases correspond to the two possible values for T . (Contributed by Mario Carneiro, 23-Sep-2014)

Ref Expression
Hypotheses ang.1 F = x 0 , y 0 log y x
ang180lem1.2 T = log 1 1 A + log A 1 A + log A
ang180lem1.3 N = T i 2 π 1 2
Assertion ang180lem3 A A 0 A 1 T i π i π

Proof

Step Hyp Ref Expression
1 ang.1 F = x 0 , y 0 log y x
2 ang180lem1.2 T = log 1 1 A + log A 1 A + log A
3 ang180lem1.3 N = T i 2 π 1 2
4 2cn 2
5 picn π
6 4 5 mulcli 2 π
7 2ne0 2 0
8 6 4 7 divreci 2 π 2 = 2 π 1 2
9 5 4 7 divcan3i 2 π 2 = π
10 8 9 eqtr3i 2 π 1 2 = π
11 1 2 3 ang180lem2 A A 0 A 1 2 < N N < 1
12 11 simprd A A 0 A 1 N < 1
13 1e0p1 1 = 0 + 1
14 12 13 breqtrdi A A 0 A 1 N < 0 + 1
15 1 2 3 ang180lem1 A A 0 A 1 N T i
16 15 simpld A A 0 A 1 N
17 0z 0
18 zleltp1 N 0 N 0 N < 0 + 1
19 16 17 18 sylancl A A 0 A 1 N 0 N < 0 + 1
20 14 19 mpbird A A 0 A 1 N 0
21 20 adantr A A 0 A 1 1 < N N 0
22 zlem1lt 0 N 0 N 0 1 < N
23 17 16 22 sylancr A A 0 A 1 0 N 0 1 < N
24 df-neg 1 = 0 1
25 24 breq1i 1 < N 0 1 < N
26 23 25 bitr4di A A 0 A 1 0 N 1 < N
27 26 biimpar A A 0 A 1 1 < N 0 N
28 16 zred A A 0 A 1 N
29 28 adantr A A 0 A 1 1 < N N
30 0re 0
31 letri3 N 0 N = 0 N 0 0 N
32 29 30 31 sylancl A A 0 A 1 1 < N N = 0 N 0 0 N
33 21 27 32 mpbir2and A A 0 A 1 1 < N N = 0
34 3 33 syl5eqr A A 0 A 1 1 < N T i 2 π 1 2 = 0
35 ax-1cn 1
36 simp1 A A 0 A 1 A
37 subcl 1 A 1 A
38 35 36 37 sylancr A A 0 A 1 1 A
39 simp3 A A 0 A 1 A 1
40 39 necomd A A 0 A 1 1 A
41 subeq0 1 A 1 A = 0 1 = A
42 35 36 41 sylancr A A 0 A 1 1 A = 0 1 = A
43 42 necon3bid A A 0 A 1 1 A 0 1 A
44 40 43 mpbird A A 0 A 1 1 A 0
45 38 44 reccld A A 0 A 1 1 1 A
46 38 44 recne0d A A 0 A 1 1 1 A 0
47 45 46 logcld A A 0 A 1 log 1 1 A
48 subcl A 1 A 1
49 36 35 48 sylancl A A 0 A 1 A 1
50 simp2 A A 0 A 1 A 0
51 49 36 50 divcld A A 0 A 1 A 1 A
52 subeq0 A 1 A 1 = 0 A = 1
53 36 35 52 sylancl A A 0 A 1 A 1 = 0 A = 1
54 53 necon3bid A A 0 A 1 A 1 0 A 1
55 39 54 mpbird A A 0 A 1 A 1 0
56 49 36 55 50 divne0d A A 0 A 1 A 1 A 0
57 51 56 logcld A A 0 A 1 log A 1 A
58 47 57 addcld A A 0 A 1 log 1 1 A + log A 1 A
59 logcl A A 0 log A
60 59 3adant3 A A 0 A 1 log A
61 58 60 addcld A A 0 A 1 log 1 1 A + log A 1 A + log A
62 2 61 eqeltrid A A 0 A 1 T
63 ax-icn i
64 63 a1i A A 0 A 1 i
65 ine0 i 0
66 65 a1i A A 0 A 1 i 0
67 62 64 66 divcld A A 0 A 1 T i
68 6 a1i A A 0 A 1 2 π
69 pire π
70 pipos 0 < π
71 69 70 gt0ne0ii π 0
72 4 5 7 71 mulne0i 2 π 0
73 72 a1i A A 0 A 1 2 π 0
74 67 68 73 divcld A A 0 A 1 T i 2 π
75 74 adantr A A 0 A 1 1 < N T i 2 π
76 halfcn 1 2
77 subeq0 T i 2 π 1 2 T i 2 π 1 2 = 0 T i 2 π = 1 2
78 75 76 77 sylancl A A 0 A 1 1 < N T i 2 π 1 2 = 0 T i 2 π = 1 2
79 34 78 mpbid A A 0 A 1 1 < N T i 2 π = 1 2
80 67 adantr A A 0 A 1 1 < N T i
81 6 a1i A A 0 A 1 1 < N 2 π
82 76 a1i A A 0 A 1 1 < N 1 2
83 72 a1i A A 0 A 1 1 < N 2 π 0
84 80 81 82 83 divmuld A A 0 A 1 1 < N T i 2 π = 1 2 2 π 1 2 = T i
85 79 84 mpbid A A 0 A 1 1 < N 2 π 1 2 = T i
86 10 85 syl5reqr A A 0 A 1 1 < N T i = π
87 62 adantr A A 0 A 1 1 < N T
88 63 a1i A A 0 A 1 1 < N i
89 5 a1i A A 0 A 1 1 < N π
90 65 a1i A A 0 A 1 1 < N i 0
91 87 88 89 90 divmuld A A 0 A 1 1 < N T i = π i π = T
92 86 91 mpbid A A 0 A 1 1 < N i π = T
93 92 eqcomd A A 0 A 1 1 < N T = i π
94 93 olcd A A 0 A 1 1 < N T = i π T = i π
95 5 63 mulneg1i π i = π i
96 5 63 mulcomi π i = i π
97 96 negeqi π i = i π
98 95 97 eqtri π i = i π
99 76 6 mulneg1i 1 2 2 π = 1 2 2 π
100 35 4 7 divcan1i 1 2 2 = 1
101 100 oveq1i 1 2 2 π = 1 π
102 76 4 5 mulassi 1 2 2 π = 1 2 2 π
103 5 mulid2i 1 π = π
104 101 102 103 3eqtr3i 1 2 2 π = π
105 104 negeqi 1 2 2 π = π
106 99 105 eqtri 1 2 2 π = π
107 35 76 negsubdii 1 1 2 = - 1 + 1 2
108 1mhlfehlf 1 1 2 = 1 2
109 108 negeqi 1 1 2 = 1 2
110 107 109 eqtr3i - 1 + 1 2 = 1 2
111 simpr A A 0 A 1 1 = N 1 = N
112 111 3 eqtrdi A A 0 A 1 1 = N 1 = T i 2 π 1 2
113 112 oveq1d A A 0 A 1 1 = N - 1 + 1 2 = T i 2 π - 1 2 + 1 2
114 110 113 syl5eqr A A 0 A 1 1 = N 1 2 = T i 2 π - 1 2 + 1 2
115 npcan T i 2 π 1 2 T i 2 π - 1 2 + 1 2 = T i 2 π
116 74 76 115 sylancl A A 0 A 1 T i 2 π - 1 2 + 1 2 = T i 2 π
117 116 adantr A A 0 A 1 1 = N T i 2 π - 1 2 + 1 2 = T i 2 π
118 114 117 eqtrd A A 0 A 1 1 = N 1 2 = T i 2 π
119 118 oveq1d A A 0 A 1 1 = N 1 2 2 π = T i 2 π 2 π
120 106 119 syl5eqr A A 0 A 1 1 = N π = T i 2 π 2 π
121 67 68 73 divcan1d A A 0 A 1 T i 2 π 2 π = T i
122 121 adantr A A 0 A 1 1 = N T i 2 π 2 π = T i
123 120 122 eqtrd A A 0 A 1 1 = N π = T i
124 123 oveq1d A A 0 A 1 1 = N π i = T i i
125 98 124 syl5eqr A A 0 A 1 1 = N i π = T i i
126 62 64 66 divcan1d A A 0 A 1 T i i = T
127 126 adantr A A 0 A 1 1 = N T i i = T
128 125 127 eqtr2d A A 0 A 1 1 = N T = i π
129 128 orcd A A 0 A 1 1 = N T = i π T = i π
130 df-2 2 = 1 + 1
131 130 negeqi 2 = 1 + 1
132 negdi2 1 1 1 + 1 = - 1 - 1
133 35 35 132 mp2an 1 + 1 = - 1 - 1
134 131 133 eqtri 2 = - 1 - 1
135 11 simpld A A 0 A 1 2 < N
136 134 135 eqbrtrrid A A 0 A 1 - 1 - 1 < N
137 neg1z 1
138 zlem1lt 1 N 1 N - 1 - 1 < N
139 137 16 138 sylancr A A 0 A 1 1 N - 1 - 1 < N
140 136 139 mpbird A A 0 A 1 1 N
141 neg1rr 1
142 leloe 1 N 1 N 1 < N 1 = N
143 141 28 142 sylancr A A 0 A 1 1 N 1 < N 1 = N
144 140 143 mpbid A A 0 A 1 1 < N 1 = N
145 94 129 144 mpjaodan A A 0 A 1 T = i π T = i π
146 2 ovexi T V
147 146 elpr T i π i π T = i π T = i π
148 145 147 sylibr A A 0 A 1 T i π i π