| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ang.1 | ⊢ 𝐹  =  ( 𝑥  ∈  ( ℂ  ∖  { 0 } ) ,  𝑦  ∈  ( ℂ  ∖  { 0 } )  ↦  ( ℑ ‘ ( log ‘ ( 𝑦  /  𝑥 ) ) ) ) | 
						
							| 2 |  | ang180lem1.2 | ⊢ 𝑇  =  ( ( ( log ‘ ( 1  /  ( 1  −  𝐴 ) ) )  +  ( log ‘ ( ( 𝐴  −  1 )  /  𝐴 ) ) )  +  ( log ‘ 𝐴 ) ) | 
						
							| 3 |  | ang180lem1.3 | ⊢ 𝑁  =  ( ( ( 𝑇  /  i )  /  ( 2  ·  π ) )  −  ( 1  /  2 ) ) | 
						
							| 4 | 1 2 3 | ang180lem2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( - 2  <  𝑁  ∧  𝑁  <  1 ) ) | 
						
							| 5 | 4 | simprd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  𝑁  <  1 ) | 
						
							| 6 |  | 1e0p1 | ⊢ 1  =  ( 0  +  1 ) | 
						
							| 7 | 5 6 | breqtrdi | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  𝑁  <  ( 0  +  1 ) ) | 
						
							| 8 | 1 2 3 | ang180lem1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( 𝑁  ∈  ℤ  ∧  ( 𝑇  /  i )  ∈  ℝ ) ) | 
						
							| 9 | 8 | simpld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  𝑁  ∈  ℤ ) | 
						
							| 10 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 11 |  | zleltp1 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  0  ∈  ℤ )  →  ( 𝑁  ≤  0  ↔  𝑁  <  ( 0  +  1 ) ) ) | 
						
							| 12 | 9 10 11 | sylancl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( 𝑁  ≤  0  ↔  𝑁  <  ( 0  +  1 ) ) ) | 
						
							| 13 | 7 12 | mpbird | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  𝑁  ≤  0 ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  <  𝑁 )  →  𝑁  ≤  0 ) | 
						
							| 15 |  | zlem1lt | ⊢ ( ( 0  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 0  ≤  𝑁  ↔  ( 0  −  1 )  <  𝑁 ) ) | 
						
							| 16 | 10 9 15 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( 0  ≤  𝑁  ↔  ( 0  −  1 )  <  𝑁 ) ) | 
						
							| 17 |  | df-neg | ⊢ - 1  =  ( 0  −  1 ) | 
						
							| 18 | 17 | breq1i | ⊢ ( - 1  <  𝑁  ↔  ( 0  −  1 )  <  𝑁 ) | 
						
							| 19 | 16 18 | bitr4di | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( 0  ≤  𝑁  ↔  - 1  <  𝑁 ) ) | 
						
							| 20 | 19 | biimpar | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  <  𝑁 )  →  0  ≤  𝑁 ) | 
						
							| 21 | 9 | zred | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  𝑁  ∈  ℝ ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  <  𝑁 )  →  𝑁  ∈  ℝ ) | 
						
							| 23 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 24 |  | letri3 | ⊢ ( ( 𝑁  ∈  ℝ  ∧  0  ∈  ℝ )  →  ( 𝑁  =  0  ↔  ( 𝑁  ≤  0  ∧  0  ≤  𝑁 ) ) ) | 
						
							| 25 | 22 23 24 | sylancl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  <  𝑁 )  →  ( 𝑁  =  0  ↔  ( 𝑁  ≤  0  ∧  0  ≤  𝑁 ) ) ) | 
						
							| 26 | 14 20 25 | mpbir2and | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  <  𝑁 )  →  𝑁  =  0 ) | 
						
							| 27 | 3 26 | eqtr3id | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  <  𝑁 )  →  ( ( ( 𝑇  /  i )  /  ( 2  ·  π ) )  −  ( 1  /  2 ) )  =  0 ) | 
						
							| 28 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 29 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  𝐴  ∈  ℂ ) | 
						
							| 30 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( 1  −  𝐴 )  ∈  ℂ ) | 
						
							| 31 | 28 29 30 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( 1  −  𝐴 )  ∈  ℂ ) | 
						
							| 32 |  | simp3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  𝐴  ≠  1 ) | 
						
							| 33 | 32 | necomd | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  1  ≠  𝐴 ) | 
						
							| 34 |  | subeq0 | ⊢ ( ( 1  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( ( 1  −  𝐴 )  =  0  ↔  1  =  𝐴 ) ) | 
						
							| 35 | 28 29 34 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( ( 1  −  𝐴 )  =  0  ↔  1  =  𝐴 ) ) | 
						
							| 36 | 35 | necon3bid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( ( 1  −  𝐴 )  ≠  0  ↔  1  ≠  𝐴 ) ) | 
						
							| 37 | 33 36 | mpbird | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( 1  −  𝐴 )  ≠  0 ) | 
						
							| 38 | 31 37 | reccld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( 1  /  ( 1  −  𝐴 ) )  ∈  ℂ ) | 
						
							| 39 | 31 37 | recne0d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( 1  /  ( 1  −  𝐴 ) )  ≠  0 ) | 
						
							| 40 | 38 39 | logcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( log ‘ ( 1  /  ( 1  −  𝐴 ) ) )  ∈  ℂ ) | 
						
							| 41 |  | subcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( 𝐴  −  1 )  ∈  ℂ ) | 
						
							| 42 | 29 28 41 | sylancl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( 𝐴  −  1 )  ∈  ℂ ) | 
						
							| 43 |  | simp2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  𝐴  ≠  0 ) | 
						
							| 44 | 42 29 43 | divcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( ( 𝐴  −  1 )  /  𝐴 )  ∈  ℂ ) | 
						
							| 45 |  | subeq0 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝐴  −  1 )  =  0  ↔  𝐴  =  1 ) ) | 
						
							| 46 | 29 28 45 | sylancl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( ( 𝐴  −  1 )  =  0  ↔  𝐴  =  1 ) ) | 
						
							| 47 | 46 | necon3bid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( ( 𝐴  −  1 )  ≠  0  ↔  𝐴  ≠  1 ) ) | 
						
							| 48 | 32 47 | mpbird | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( 𝐴  −  1 )  ≠  0 ) | 
						
							| 49 | 42 29 48 43 | divne0d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( ( 𝐴  −  1 )  /  𝐴 )  ≠  0 ) | 
						
							| 50 | 44 49 | logcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( log ‘ ( ( 𝐴  −  1 )  /  𝐴 ) )  ∈  ℂ ) | 
						
							| 51 | 40 50 | addcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( ( log ‘ ( 1  /  ( 1  −  𝐴 ) ) )  +  ( log ‘ ( ( 𝐴  −  1 )  /  𝐴 ) ) )  ∈  ℂ ) | 
						
							| 52 |  | logcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 53 | 52 | 3adant3 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( log ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 54 | 51 53 | addcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( ( ( log ‘ ( 1  /  ( 1  −  𝐴 ) ) )  +  ( log ‘ ( ( 𝐴  −  1 )  /  𝐴 ) ) )  +  ( log ‘ 𝐴 ) )  ∈  ℂ ) | 
						
							| 55 | 2 54 | eqeltrid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  𝑇  ∈  ℂ ) | 
						
							| 56 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 57 | 56 | a1i | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  i  ∈  ℂ ) | 
						
							| 58 |  | ine0 | ⊢ i  ≠  0 | 
						
							| 59 | 58 | a1i | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  i  ≠  0 ) | 
						
							| 60 | 55 57 59 | divcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( 𝑇  /  i )  ∈  ℂ ) | 
						
							| 61 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 62 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 63 | 61 62 | mulcli | ⊢ ( 2  ·  π )  ∈  ℂ | 
						
							| 64 | 63 | a1i | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( 2  ·  π )  ∈  ℂ ) | 
						
							| 65 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 66 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 67 |  | pipos | ⊢ 0  <  π | 
						
							| 68 | 66 67 | gt0ne0ii | ⊢ π  ≠  0 | 
						
							| 69 | 61 62 65 68 | mulne0i | ⊢ ( 2  ·  π )  ≠  0 | 
						
							| 70 | 69 | a1i | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( 2  ·  π )  ≠  0 ) | 
						
							| 71 | 60 64 70 | divcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( ( 𝑇  /  i )  /  ( 2  ·  π ) )  ∈  ℂ ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  <  𝑁 )  →  ( ( 𝑇  /  i )  /  ( 2  ·  π ) )  ∈  ℂ ) | 
						
							| 73 |  | halfcn | ⊢ ( 1  /  2 )  ∈  ℂ | 
						
							| 74 |  | subeq0 | ⊢ ( ( ( ( 𝑇  /  i )  /  ( 2  ·  π ) )  ∈  ℂ  ∧  ( 1  /  2 )  ∈  ℂ )  →  ( ( ( ( 𝑇  /  i )  /  ( 2  ·  π ) )  −  ( 1  /  2 ) )  =  0  ↔  ( ( 𝑇  /  i )  /  ( 2  ·  π ) )  =  ( 1  /  2 ) ) ) | 
						
							| 75 | 72 73 74 | sylancl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  <  𝑁 )  →  ( ( ( ( 𝑇  /  i )  /  ( 2  ·  π ) )  −  ( 1  /  2 ) )  =  0  ↔  ( ( 𝑇  /  i )  /  ( 2  ·  π ) )  =  ( 1  /  2 ) ) ) | 
						
							| 76 | 27 75 | mpbid | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  <  𝑁 )  →  ( ( 𝑇  /  i )  /  ( 2  ·  π ) )  =  ( 1  /  2 ) ) | 
						
							| 77 | 60 | adantr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  <  𝑁 )  →  ( 𝑇  /  i )  ∈  ℂ ) | 
						
							| 78 | 63 | a1i | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  <  𝑁 )  →  ( 2  ·  π )  ∈  ℂ ) | 
						
							| 79 | 73 | a1i | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  <  𝑁 )  →  ( 1  /  2 )  ∈  ℂ ) | 
						
							| 80 | 69 | a1i | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  <  𝑁 )  →  ( 2  ·  π )  ≠  0 ) | 
						
							| 81 | 77 78 79 80 | divmuld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  <  𝑁 )  →  ( ( ( 𝑇  /  i )  /  ( 2  ·  π ) )  =  ( 1  /  2 )  ↔  ( ( 2  ·  π )  ·  ( 1  /  2 ) )  =  ( 𝑇  /  i ) ) ) | 
						
							| 82 | 76 81 | mpbid | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  <  𝑁 )  →  ( ( 2  ·  π )  ·  ( 1  /  2 ) )  =  ( 𝑇  /  i ) ) | 
						
							| 83 | 63 61 65 | divreci | ⊢ ( ( 2  ·  π )  /  2 )  =  ( ( 2  ·  π )  ·  ( 1  /  2 ) ) | 
						
							| 84 | 62 61 65 | divcan3i | ⊢ ( ( 2  ·  π )  /  2 )  =  π | 
						
							| 85 | 83 84 | eqtr3i | ⊢ ( ( 2  ·  π )  ·  ( 1  /  2 ) )  =  π | 
						
							| 86 | 82 85 | eqtr3di | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  <  𝑁 )  →  ( 𝑇  /  i )  =  π ) | 
						
							| 87 | 55 | adantr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  <  𝑁 )  →  𝑇  ∈  ℂ ) | 
						
							| 88 | 56 | a1i | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  <  𝑁 )  →  i  ∈  ℂ ) | 
						
							| 89 | 62 | a1i | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  <  𝑁 )  →  π  ∈  ℂ ) | 
						
							| 90 | 58 | a1i | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  <  𝑁 )  →  i  ≠  0 ) | 
						
							| 91 | 87 88 89 90 | divmuld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  <  𝑁 )  →  ( ( 𝑇  /  i )  =  π  ↔  ( i  ·  π )  =  𝑇 ) ) | 
						
							| 92 | 86 91 | mpbid | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  <  𝑁 )  →  ( i  ·  π )  =  𝑇 ) | 
						
							| 93 | 92 | eqcomd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  <  𝑁 )  →  𝑇  =  ( i  ·  π ) ) | 
						
							| 94 | 93 | olcd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  <  𝑁 )  →  ( 𝑇  =  - ( i  ·  π )  ∨  𝑇  =  ( i  ·  π ) ) ) | 
						
							| 95 | 62 56 | mulneg1i | ⊢ ( - π  ·  i )  =  - ( π  ·  i ) | 
						
							| 96 | 62 56 | mulcomi | ⊢ ( π  ·  i )  =  ( i  ·  π ) | 
						
							| 97 | 96 | negeqi | ⊢ - ( π  ·  i )  =  - ( i  ·  π ) | 
						
							| 98 | 95 97 | eqtri | ⊢ ( - π  ·  i )  =  - ( i  ·  π ) | 
						
							| 99 | 73 63 | mulneg1i | ⊢ ( - ( 1  /  2 )  ·  ( 2  ·  π ) )  =  - ( ( 1  /  2 )  ·  ( 2  ·  π ) ) | 
						
							| 100 | 28 61 65 | divcan1i | ⊢ ( ( 1  /  2 )  ·  2 )  =  1 | 
						
							| 101 | 100 | oveq1i | ⊢ ( ( ( 1  /  2 )  ·  2 )  ·  π )  =  ( 1  ·  π ) | 
						
							| 102 | 73 61 62 | mulassi | ⊢ ( ( ( 1  /  2 )  ·  2 )  ·  π )  =  ( ( 1  /  2 )  ·  ( 2  ·  π ) ) | 
						
							| 103 | 62 | mullidi | ⊢ ( 1  ·  π )  =  π | 
						
							| 104 | 101 102 103 | 3eqtr3i | ⊢ ( ( 1  /  2 )  ·  ( 2  ·  π ) )  =  π | 
						
							| 105 | 104 | negeqi | ⊢ - ( ( 1  /  2 )  ·  ( 2  ·  π ) )  =  - π | 
						
							| 106 | 99 105 | eqtri | ⊢ ( - ( 1  /  2 )  ·  ( 2  ·  π ) )  =  - π | 
						
							| 107 | 28 73 | negsubdii | ⊢ - ( 1  −  ( 1  /  2 ) )  =  ( - 1  +  ( 1  /  2 ) ) | 
						
							| 108 |  | 1mhlfehlf | ⊢ ( 1  −  ( 1  /  2 ) )  =  ( 1  /  2 ) | 
						
							| 109 | 108 | negeqi | ⊢ - ( 1  −  ( 1  /  2 ) )  =  - ( 1  /  2 ) | 
						
							| 110 | 107 109 | eqtr3i | ⊢ ( - 1  +  ( 1  /  2 ) )  =  - ( 1  /  2 ) | 
						
							| 111 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  =  𝑁 )  →  - 1  =  𝑁 ) | 
						
							| 112 | 111 3 | eqtrdi | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  =  𝑁 )  →  - 1  =  ( ( ( 𝑇  /  i )  /  ( 2  ·  π ) )  −  ( 1  /  2 ) ) ) | 
						
							| 113 | 112 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  =  𝑁 )  →  ( - 1  +  ( 1  /  2 ) )  =  ( ( ( ( 𝑇  /  i )  /  ( 2  ·  π ) )  −  ( 1  /  2 ) )  +  ( 1  /  2 ) ) ) | 
						
							| 114 | 110 113 | eqtr3id | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  =  𝑁 )  →  - ( 1  /  2 )  =  ( ( ( ( 𝑇  /  i )  /  ( 2  ·  π ) )  −  ( 1  /  2 ) )  +  ( 1  /  2 ) ) ) | 
						
							| 115 |  | npcan | ⊢ ( ( ( ( 𝑇  /  i )  /  ( 2  ·  π ) )  ∈  ℂ  ∧  ( 1  /  2 )  ∈  ℂ )  →  ( ( ( ( 𝑇  /  i )  /  ( 2  ·  π ) )  −  ( 1  /  2 ) )  +  ( 1  /  2 ) )  =  ( ( 𝑇  /  i )  /  ( 2  ·  π ) ) ) | 
						
							| 116 | 71 73 115 | sylancl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( ( ( ( 𝑇  /  i )  /  ( 2  ·  π ) )  −  ( 1  /  2 ) )  +  ( 1  /  2 ) )  =  ( ( 𝑇  /  i )  /  ( 2  ·  π ) ) ) | 
						
							| 117 | 116 | adantr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  =  𝑁 )  →  ( ( ( ( 𝑇  /  i )  /  ( 2  ·  π ) )  −  ( 1  /  2 ) )  +  ( 1  /  2 ) )  =  ( ( 𝑇  /  i )  /  ( 2  ·  π ) ) ) | 
						
							| 118 | 114 117 | eqtrd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  =  𝑁 )  →  - ( 1  /  2 )  =  ( ( 𝑇  /  i )  /  ( 2  ·  π ) ) ) | 
						
							| 119 | 118 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  =  𝑁 )  →  ( - ( 1  /  2 )  ·  ( 2  ·  π ) )  =  ( ( ( 𝑇  /  i )  /  ( 2  ·  π ) )  ·  ( 2  ·  π ) ) ) | 
						
							| 120 | 106 119 | eqtr3id | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  =  𝑁 )  →  - π  =  ( ( ( 𝑇  /  i )  /  ( 2  ·  π ) )  ·  ( 2  ·  π ) ) ) | 
						
							| 121 | 60 64 70 | divcan1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( ( ( 𝑇  /  i )  /  ( 2  ·  π ) )  ·  ( 2  ·  π ) )  =  ( 𝑇  /  i ) ) | 
						
							| 122 | 121 | adantr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  =  𝑁 )  →  ( ( ( 𝑇  /  i )  /  ( 2  ·  π ) )  ·  ( 2  ·  π ) )  =  ( 𝑇  /  i ) ) | 
						
							| 123 | 120 122 | eqtrd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  =  𝑁 )  →  - π  =  ( 𝑇  /  i ) ) | 
						
							| 124 | 123 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  =  𝑁 )  →  ( - π  ·  i )  =  ( ( 𝑇  /  i )  ·  i ) ) | 
						
							| 125 | 98 124 | eqtr3id | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  =  𝑁 )  →  - ( i  ·  π )  =  ( ( 𝑇  /  i )  ·  i ) ) | 
						
							| 126 | 55 57 59 | divcan1d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( ( 𝑇  /  i )  ·  i )  =  𝑇 ) | 
						
							| 127 | 126 | adantr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  =  𝑁 )  →  ( ( 𝑇  /  i )  ·  i )  =  𝑇 ) | 
						
							| 128 | 125 127 | eqtr2d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  =  𝑁 )  →  𝑇  =  - ( i  ·  π ) ) | 
						
							| 129 | 128 | orcd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  ∧  - 1  =  𝑁 )  →  ( 𝑇  =  - ( i  ·  π )  ∨  𝑇  =  ( i  ·  π ) ) ) | 
						
							| 130 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 131 | 130 | negeqi | ⊢ - 2  =  - ( 1  +  1 ) | 
						
							| 132 |  | negdi2 | ⊢ ( ( 1  ∈  ℂ  ∧  1  ∈  ℂ )  →  - ( 1  +  1 )  =  ( - 1  −  1 ) ) | 
						
							| 133 | 28 28 132 | mp2an | ⊢ - ( 1  +  1 )  =  ( - 1  −  1 ) | 
						
							| 134 | 131 133 | eqtri | ⊢ - 2  =  ( - 1  −  1 ) | 
						
							| 135 | 4 | simpld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  - 2  <  𝑁 ) | 
						
							| 136 | 134 135 | eqbrtrrid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( - 1  −  1 )  <  𝑁 ) | 
						
							| 137 |  | neg1z | ⊢ - 1  ∈  ℤ | 
						
							| 138 |  | zlem1lt | ⊢ ( ( - 1  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( - 1  ≤  𝑁  ↔  ( - 1  −  1 )  <  𝑁 ) ) | 
						
							| 139 | 137 9 138 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( - 1  ≤  𝑁  ↔  ( - 1  −  1 )  <  𝑁 ) ) | 
						
							| 140 | 136 139 | mpbird | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  - 1  ≤  𝑁 ) | 
						
							| 141 |  | neg1rr | ⊢ - 1  ∈  ℝ | 
						
							| 142 |  | leloe | ⊢ ( ( - 1  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( - 1  ≤  𝑁  ↔  ( - 1  <  𝑁  ∨  - 1  =  𝑁 ) ) ) | 
						
							| 143 | 141 21 142 | sylancr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( - 1  ≤  𝑁  ↔  ( - 1  <  𝑁  ∨  - 1  =  𝑁 ) ) ) | 
						
							| 144 | 140 143 | mpbid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( - 1  <  𝑁  ∨  - 1  =  𝑁 ) ) | 
						
							| 145 | 94 129 144 | mpjaodan | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  ( 𝑇  =  - ( i  ·  π )  ∨  𝑇  =  ( i  ·  π ) ) ) | 
						
							| 146 | 2 | ovexi | ⊢ 𝑇  ∈  V | 
						
							| 147 | 146 | elpr | ⊢ ( 𝑇  ∈  { - ( i  ·  π ) ,  ( i  ·  π ) }  ↔  ( 𝑇  =  - ( i  ·  π )  ∨  𝑇  =  ( i  ·  π ) ) ) | 
						
							| 148 | 145 147 | sylibr | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0  ∧  𝐴  ≠  1 )  →  𝑇  ∈  { - ( i  ·  π ) ,  ( i  ·  π ) } ) |