| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ang.1 |
|- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
| 2 |
|
ang180lem1.2 |
|- T = ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) |
| 3 |
|
ang180lem1.3 |
|- N = ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) |
| 4 |
1 2 3
|
ang180lem2 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u 2 < N /\ N < 1 ) ) |
| 5 |
4
|
simprd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> N < 1 ) |
| 6 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
| 7 |
5 6
|
breqtrdi |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> N < ( 0 + 1 ) ) |
| 8 |
1 2 3
|
ang180lem1 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( N e. ZZ /\ ( T / _i ) e. RR ) ) |
| 9 |
8
|
simpld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> N e. ZZ ) |
| 10 |
|
0z |
|- 0 e. ZZ |
| 11 |
|
zleltp1 |
|- ( ( N e. ZZ /\ 0 e. ZZ ) -> ( N <_ 0 <-> N < ( 0 + 1 ) ) ) |
| 12 |
9 10 11
|
sylancl |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( N <_ 0 <-> N < ( 0 + 1 ) ) ) |
| 13 |
7 12
|
mpbird |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> N <_ 0 ) |
| 14 |
13
|
adantr |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 < N ) -> N <_ 0 ) |
| 15 |
|
zlem1lt |
|- ( ( 0 e. ZZ /\ N e. ZZ ) -> ( 0 <_ N <-> ( 0 - 1 ) < N ) ) |
| 16 |
10 9 15
|
sylancr |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 0 <_ N <-> ( 0 - 1 ) < N ) ) |
| 17 |
|
df-neg |
|- -u 1 = ( 0 - 1 ) |
| 18 |
17
|
breq1i |
|- ( -u 1 < N <-> ( 0 - 1 ) < N ) |
| 19 |
16 18
|
bitr4di |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 0 <_ N <-> -u 1 < N ) ) |
| 20 |
19
|
biimpar |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 < N ) -> 0 <_ N ) |
| 21 |
9
|
zred |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> N e. RR ) |
| 22 |
21
|
adantr |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 < N ) -> N e. RR ) |
| 23 |
|
0re |
|- 0 e. RR |
| 24 |
|
letri3 |
|- ( ( N e. RR /\ 0 e. RR ) -> ( N = 0 <-> ( N <_ 0 /\ 0 <_ N ) ) ) |
| 25 |
22 23 24
|
sylancl |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 < N ) -> ( N = 0 <-> ( N <_ 0 /\ 0 <_ N ) ) ) |
| 26 |
14 20 25
|
mpbir2and |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 < N ) -> N = 0 ) |
| 27 |
3 26
|
eqtr3id |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 < N ) -> ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) = 0 ) |
| 28 |
|
ax-1cn |
|- 1 e. CC |
| 29 |
|
simp1 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A e. CC ) |
| 30 |
|
subcl |
|- ( ( 1 e. CC /\ A e. CC ) -> ( 1 - A ) e. CC ) |
| 31 |
28 29 30
|
sylancr |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 - A ) e. CC ) |
| 32 |
|
simp3 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A =/= 1 ) |
| 33 |
32
|
necomd |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> 1 =/= A ) |
| 34 |
|
subeq0 |
|- ( ( 1 e. CC /\ A e. CC ) -> ( ( 1 - A ) = 0 <-> 1 = A ) ) |
| 35 |
28 29 34
|
sylancr |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 1 - A ) = 0 <-> 1 = A ) ) |
| 36 |
35
|
necon3bid |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( 1 - A ) =/= 0 <-> 1 =/= A ) ) |
| 37 |
33 36
|
mpbird |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 - A ) =/= 0 ) |
| 38 |
31 37
|
reccld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 / ( 1 - A ) ) e. CC ) |
| 39 |
31 37
|
recne0d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 1 / ( 1 - A ) ) =/= 0 ) |
| 40 |
38 39
|
logcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` ( 1 / ( 1 - A ) ) ) e. CC ) |
| 41 |
|
subcl |
|- ( ( A e. CC /\ 1 e. CC ) -> ( A - 1 ) e. CC ) |
| 42 |
29 28 41
|
sylancl |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( A - 1 ) e. CC ) |
| 43 |
|
simp2 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A =/= 0 ) |
| 44 |
42 29 43
|
divcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( A - 1 ) / A ) e. CC ) |
| 45 |
|
subeq0 |
|- ( ( A e. CC /\ 1 e. CC ) -> ( ( A - 1 ) = 0 <-> A = 1 ) ) |
| 46 |
29 28 45
|
sylancl |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( A - 1 ) = 0 <-> A = 1 ) ) |
| 47 |
46
|
necon3bid |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( A - 1 ) =/= 0 <-> A =/= 1 ) ) |
| 48 |
32 47
|
mpbird |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( A - 1 ) =/= 0 ) |
| 49 |
42 29 48 43
|
divne0d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( A - 1 ) / A ) =/= 0 ) |
| 50 |
44 49
|
logcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` ( ( A - 1 ) / A ) ) e. CC ) |
| 51 |
40 50
|
addcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) e. CC ) |
| 52 |
|
logcl |
|- ( ( A e. CC /\ A =/= 0 ) -> ( log ` A ) e. CC ) |
| 53 |
52
|
3adant3 |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` A ) e. CC ) |
| 54 |
51 53
|
addcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( log ` ( 1 / ( 1 - A ) ) ) + ( log ` ( ( A - 1 ) / A ) ) ) + ( log ` A ) ) e. CC ) |
| 55 |
2 54
|
eqeltrid |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> T e. CC ) |
| 56 |
|
ax-icn |
|- _i e. CC |
| 57 |
56
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> _i e. CC ) |
| 58 |
|
ine0 |
|- _i =/= 0 |
| 59 |
58
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> _i =/= 0 ) |
| 60 |
55 57 59
|
divcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( T / _i ) e. CC ) |
| 61 |
|
2cn |
|- 2 e. CC |
| 62 |
|
picn |
|- _pi e. CC |
| 63 |
61 62
|
mulcli |
|- ( 2 x. _pi ) e. CC |
| 64 |
63
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 2 x. _pi ) e. CC ) |
| 65 |
|
2ne0 |
|- 2 =/= 0 |
| 66 |
|
pire |
|- _pi e. RR |
| 67 |
|
pipos |
|- 0 < _pi |
| 68 |
66 67
|
gt0ne0ii |
|- _pi =/= 0 |
| 69 |
61 62 65 68
|
mulne0i |
|- ( 2 x. _pi ) =/= 0 |
| 70 |
69
|
a1i |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( 2 x. _pi ) =/= 0 ) |
| 71 |
60 64 70
|
divcld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( T / _i ) / ( 2 x. _pi ) ) e. CC ) |
| 72 |
71
|
adantr |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 < N ) -> ( ( T / _i ) / ( 2 x. _pi ) ) e. CC ) |
| 73 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
| 74 |
|
subeq0 |
|- ( ( ( ( T / _i ) / ( 2 x. _pi ) ) e. CC /\ ( 1 / 2 ) e. CC ) -> ( ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) = 0 <-> ( ( T / _i ) / ( 2 x. _pi ) ) = ( 1 / 2 ) ) ) |
| 75 |
72 73 74
|
sylancl |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 < N ) -> ( ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) = 0 <-> ( ( T / _i ) / ( 2 x. _pi ) ) = ( 1 / 2 ) ) ) |
| 76 |
27 75
|
mpbid |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 < N ) -> ( ( T / _i ) / ( 2 x. _pi ) ) = ( 1 / 2 ) ) |
| 77 |
60
|
adantr |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 < N ) -> ( T / _i ) e. CC ) |
| 78 |
63
|
a1i |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 < N ) -> ( 2 x. _pi ) e. CC ) |
| 79 |
73
|
a1i |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 < N ) -> ( 1 / 2 ) e. CC ) |
| 80 |
69
|
a1i |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 < N ) -> ( 2 x. _pi ) =/= 0 ) |
| 81 |
77 78 79 80
|
divmuld |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 < N ) -> ( ( ( T / _i ) / ( 2 x. _pi ) ) = ( 1 / 2 ) <-> ( ( 2 x. _pi ) x. ( 1 / 2 ) ) = ( T / _i ) ) ) |
| 82 |
76 81
|
mpbid |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 < N ) -> ( ( 2 x. _pi ) x. ( 1 / 2 ) ) = ( T / _i ) ) |
| 83 |
63 61 65
|
divreci |
|- ( ( 2 x. _pi ) / 2 ) = ( ( 2 x. _pi ) x. ( 1 / 2 ) ) |
| 84 |
62 61 65
|
divcan3i |
|- ( ( 2 x. _pi ) / 2 ) = _pi |
| 85 |
83 84
|
eqtr3i |
|- ( ( 2 x. _pi ) x. ( 1 / 2 ) ) = _pi |
| 86 |
82 85
|
eqtr3di |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 < N ) -> ( T / _i ) = _pi ) |
| 87 |
55
|
adantr |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 < N ) -> T e. CC ) |
| 88 |
56
|
a1i |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 < N ) -> _i e. CC ) |
| 89 |
62
|
a1i |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 < N ) -> _pi e. CC ) |
| 90 |
58
|
a1i |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 < N ) -> _i =/= 0 ) |
| 91 |
87 88 89 90
|
divmuld |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 < N ) -> ( ( T / _i ) = _pi <-> ( _i x. _pi ) = T ) ) |
| 92 |
86 91
|
mpbid |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 < N ) -> ( _i x. _pi ) = T ) |
| 93 |
92
|
eqcomd |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 < N ) -> T = ( _i x. _pi ) ) |
| 94 |
93
|
olcd |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 < N ) -> ( T = -u ( _i x. _pi ) \/ T = ( _i x. _pi ) ) ) |
| 95 |
62 56
|
mulneg1i |
|- ( -u _pi x. _i ) = -u ( _pi x. _i ) |
| 96 |
62 56
|
mulcomi |
|- ( _pi x. _i ) = ( _i x. _pi ) |
| 97 |
96
|
negeqi |
|- -u ( _pi x. _i ) = -u ( _i x. _pi ) |
| 98 |
95 97
|
eqtri |
|- ( -u _pi x. _i ) = -u ( _i x. _pi ) |
| 99 |
73 63
|
mulneg1i |
|- ( -u ( 1 / 2 ) x. ( 2 x. _pi ) ) = -u ( ( 1 / 2 ) x. ( 2 x. _pi ) ) |
| 100 |
28 61 65
|
divcan1i |
|- ( ( 1 / 2 ) x. 2 ) = 1 |
| 101 |
100
|
oveq1i |
|- ( ( ( 1 / 2 ) x. 2 ) x. _pi ) = ( 1 x. _pi ) |
| 102 |
73 61 62
|
mulassi |
|- ( ( ( 1 / 2 ) x. 2 ) x. _pi ) = ( ( 1 / 2 ) x. ( 2 x. _pi ) ) |
| 103 |
62
|
mullidi |
|- ( 1 x. _pi ) = _pi |
| 104 |
101 102 103
|
3eqtr3i |
|- ( ( 1 / 2 ) x. ( 2 x. _pi ) ) = _pi |
| 105 |
104
|
negeqi |
|- -u ( ( 1 / 2 ) x. ( 2 x. _pi ) ) = -u _pi |
| 106 |
99 105
|
eqtri |
|- ( -u ( 1 / 2 ) x. ( 2 x. _pi ) ) = -u _pi |
| 107 |
28 73
|
negsubdii |
|- -u ( 1 - ( 1 / 2 ) ) = ( -u 1 + ( 1 / 2 ) ) |
| 108 |
|
1mhlfehlf |
|- ( 1 - ( 1 / 2 ) ) = ( 1 / 2 ) |
| 109 |
108
|
negeqi |
|- -u ( 1 - ( 1 / 2 ) ) = -u ( 1 / 2 ) |
| 110 |
107 109
|
eqtr3i |
|- ( -u 1 + ( 1 / 2 ) ) = -u ( 1 / 2 ) |
| 111 |
|
simpr |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 = N ) -> -u 1 = N ) |
| 112 |
111 3
|
eqtrdi |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 = N ) -> -u 1 = ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) ) |
| 113 |
112
|
oveq1d |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 = N ) -> ( -u 1 + ( 1 / 2 ) ) = ( ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) + ( 1 / 2 ) ) ) |
| 114 |
110 113
|
eqtr3id |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 = N ) -> -u ( 1 / 2 ) = ( ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) + ( 1 / 2 ) ) ) |
| 115 |
|
npcan |
|- ( ( ( ( T / _i ) / ( 2 x. _pi ) ) e. CC /\ ( 1 / 2 ) e. CC ) -> ( ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) + ( 1 / 2 ) ) = ( ( T / _i ) / ( 2 x. _pi ) ) ) |
| 116 |
71 73 115
|
sylancl |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) + ( 1 / 2 ) ) = ( ( T / _i ) / ( 2 x. _pi ) ) ) |
| 117 |
116
|
adantr |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 = N ) -> ( ( ( ( T / _i ) / ( 2 x. _pi ) ) - ( 1 / 2 ) ) + ( 1 / 2 ) ) = ( ( T / _i ) / ( 2 x. _pi ) ) ) |
| 118 |
114 117
|
eqtrd |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 = N ) -> -u ( 1 / 2 ) = ( ( T / _i ) / ( 2 x. _pi ) ) ) |
| 119 |
118
|
oveq1d |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 = N ) -> ( -u ( 1 / 2 ) x. ( 2 x. _pi ) ) = ( ( ( T / _i ) / ( 2 x. _pi ) ) x. ( 2 x. _pi ) ) ) |
| 120 |
106 119
|
eqtr3id |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 = N ) -> -u _pi = ( ( ( T / _i ) / ( 2 x. _pi ) ) x. ( 2 x. _pi ) ) ) |
| 121 |
60 64 70
|
divcan1d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( ( T / _i ) / ( 2 x. _pi ) ) x. ( 2 x. _pi ) ) = ( T / _i ) ) |
| 122 |
121
|
adantr |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 = N ) -> ( ( ( T / _i ) / ( 2 x. _pi ) ) x. ( 2 x. _pi ) ) = ( T / _i ) ) |
| 123 |
120 122
|
eqtrd |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 = N ) -> -u _pi = ( T / _i ) ) |
| 124 |
123
|
oveq1d |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 = N ) -> ( -u _pi x. _i ) = ( ( T / _i ) x. _i ) ) |
| 125 |
98 124
|
eqtr3id |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 = N ) -> -u ( _i x. _pi ) = ( ( T / _i ) x. _i ) ) |
| 126 |
55 57 59
|
divcan1d |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( T / _i ) x. _i ) = T ) |
| 127 |
126
|
adantr |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 = N ) -> ( ( T / _i ) x. _i ) = T ) |
| 128 |
125 127
|
eqtr2d |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 = N ) -> T = -u ( _i x. _pi ) ) |
| 129 |
128
|
orcd |
|- ( ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) /\ -u 1 = N ) -> ( T = -u ( _i x. _pi ) \/ T = ( _i x. _pi ) ) ) |
| 130 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 131 |
130
|
negeqi |
|- -u 2 = -u ( 1 + 1 ) |
| 132 |
|
negdi2 |
|- ( ( 1 e. CC /\ 1 e. CC ) -> -u ( 1 + 1 ) = ( -u 1 - 1 ) ) |
| 133 |
28 28 132
|
mp2an |
|- -u ( 1 + 1 ) = ( -u 1 - 1 ) |
| 134 |
131 133
|
eqtri |
|- -u 2 = ( -u 1 - 1 ) |
| 135 |
4
|
simpld |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -u 2 < N ) |
| 136 |
134 135
|
eqbrtrrid |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u 1 - 1 ) < N ) |
| 137 |
|
neg1z |
|- -u 1 e. ZZ |
| 138 |
|
zlem1lt |
|- ( ( -u 1 e. ZZ /\ N e. ZZ ) -> ( -u 1 <_ N <-> ( -u 1 - 1 ) < N ) ) |
| 139 |
137 9 138
|
sylancr |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u 1 <_ N <-> ( -u 1 - 1 ) < N ) ) |
| 140 |
136 139
|
mpbird |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -u 1 <_ N ) |
| 141 |
|
neg1rr |
|- -u 1 e. RR |
| 142 |
|
leloe |
|- ( ( -u 1 e. RR /\ N e. RR ) -> ( -u 1 <_ N <-> ( -u 1 < N \/ -u 1 = N ) ) ) |
| 143 |
141 21 142
|
sylancr |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u 1 <_ N <-> ( -u 1 < N \/ -u 1 = N ) ) ) |
| 144 |
140 143
|
mpbid |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( -u 1 < N \/ -u 1 = N ) ) |
| 145 |
94 129 144
|
mpjaodan |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( T = -u ( _i x. _pi ) \/ T = ( _i x. _pi ) ) ) |
| 146 |
2
|
ovexi |
|- T e. _V |
| 147 |
146
|
elpr |
|- ( T e. { -u ( _i x. _pi ) , ( _i x. _pi ) } <-> ( T = -u ( _i x. _pi ) \/ T = ( _i x. _pi ) ) ) |
| 148 |
145 147
|
sylibr |
|- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> T e. { -u ( _i x. _pi ) , ( _i x. _pi ) } ) |