Metamath Proof Explorer


Theorem angpined

Description: If the angle at ABC is _pi , then A is not equal to C . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses angpieqvd.angdef F=x0,y0logyx
angpieqvd.A φA
angpieqvd.B φB
angpieqvd.C φC
angpieqvd.AneB φAB
angpieqvd.BneC φBC
Assertion angpined φABFCB=πAC

Proof

Step Hyp Ref Expression
1 angpieqvd.angdef F=x0,y0logyx
2 angpieqvd.A φA
3 angpieqvd.B φB
4 angpieqvd.C φC
5 angpieqvd.AneB φAB
6 angpieqvd.BneC φBC
7 1 2 3 4 5 6 angpieqvdlem2 φCBAB+ABFCB=π
8 1rp 1+
9 1re 1
10 ax-1ne0 10
11 rpneg 1101+¬1+
12 9 10 11 mp2an 1+¬1+
13 8 12 mpbi ¬1+
14 2 3 subcld φAB
15 14 adantr φC=AAB
16 2 3 5 subne0d φAB0
17 16 adantr φC=AAB0
18 simpr φC=AC=A
19 18 oveq1d φC=ACB=AB
20 15 17 19 diveq1bd φC=ACBAB=1
21 20 adantlr φCBAB+C=ACBAB=1
22 21 negeqd φCBAB+C=ACBAB=1
23 simplr φCBAB+C=ACBAB+
24 22 23 eqeltrrd φCBAB+C=A1+
25 24 ex φCBAB+C=A1+
26 25 necon3bd φCBAB+¬1+CA
27 13 26 mpi φCBAB+CA
28 27 ex φCBAB+CA
29 necom CAAC
30 28 29 imbitrdi φCBAB+AC
31 7 30 sylbird φABFCB=πAC