Metamath Proof Explorer


Theorem aomclem3

Description: Lemma for dfac11 . Successor case 3, our required well-ordering. (Contributed by Stefan O'Rear, 19-Jan-2015)

Ref Expression
Hypotheses aomclem3.b B=ab|cR1domzcb¬cadR1domzdzdomzcdadb
aomclem3.c C=aVsupyaR1domzB
aomclem3.d D=recsaVCR1domzrana
aomclem3.e E=ab|D-1aD-1b
aomclem3.on φdomzOn
aomclem3.su φdomz=sucdomz
aomclem3.we φadomzzaWeR1a
aomclem3.a φAOn
aomclem3.za φdomzA
aomclem3.y φa𝒫R1Aaya𝒫aFin
Assertion aomclem3 φEWeR1domz

Proof

Step Hyp Ref Expression
1 aomclem3.b B=ab|cR1domzcb¬cadR1domzdzdomzcdadb
2 aomclem3.c C=aVsupyaR1domzB
3 aomclem3.d D=recsaVCR1domzrana
4 aomclem3.e E=ab|D-1aD-1b
5 aomclem3.on φdomzOn
6 aomclem3.su φdomz=sucdomz
7 aomclem3.we φadomzzaWeR1a
8 aomclem3.a φAOn
9 aomclem3.za φdomzA
10 aomclem3.y φa𝒫R1Aaya𝒫aFin
11 rneq a=crana=ranc
12 11 difeq2d a=cR1domzrana=R1domzranc
13 12 fveq2d a=cCR1domzrana=CR1domzranc
14 13 cbvmptv aVCR1domzrana=cVCR1domzranc
15 recseq aVCR1domzrana=cVCR1domzrancrecsaVCR1domzrana=recscVCR1domzranc
16 14 15 ax-mp recsaVCR1domzrana=recscVCR1domzranc
17 3 16 eqtri D=recscVCR1domzranc
18 fvexd φR1domzV
19 1 2 5 6 7 8 9 10 aomclem2 φa𝒫R1domzaCaa
20 neeq1 a=dad
21 fveq2 a=dCa=Cd
22 id a=da=d
23 21 22 eleq12d a=dCaaCdd
24 20 23 imbi12d a=daCaadCdd
25 24 cbvralvw a𝒫R1domzaCaad𝒫R1domzdCdd
26 19 25 sylib φd𝒫R1domzdCdd
27 17 18 26 4 dnwech φEWeR1domz