Metamath Proof Explorer


Theorem ascldimul

Description: The algebra scalars function distributes over multiplication. (Contributed by Mario Carneiro, 8-Mar-2015) (Proof shortened by SN, 5-Nov-2023)

Ref Expression
Hypotheses ascldimul.a A = algSc W
ascldimul.f F = Scalar W
ascldimul.k K = Base F
ascldimul.t × ˙ = W
ascldimul.s · ˙ = F
Assertion ascldimul W AssAlg R K S K A R · ˙ S = A R × ˙ A S

Proof

Step Hyp Ref Expression
1 ascldimul.a A = algSc W
2 ascldimul.f F = Scalar W
3 ascldimul.k K = Base F
4 ascldimul.t × ˙ = W
5 ascldimul.s · ˙ = F
6 assalmod W AssAlg W LMod
7 6 3ad2ant1 W AssAlg R K S K W LMod
8 simp2 W AssAlg R K S K R K
9 simp3 W AssAlg R K S K S K
10 assaring W AssAlg W Ring
11 10 3ad2ant1 W AssAlg R K S K W Ring
12 eqid Base W = Base W
13 eqid 1 W = 1 W
14 12 13 ringidcl W Ring 1 W Base W
15 11 14 syl W AssAlg R K S K 1 W Base W
16 eqid W = W
17 12 2 16 3 5 lmodvsass W LMod R K S K 1 W Base W R · ˙ S W 1 W = R W S W 1 W
18 7 8 9 15 17 syl13anc W AssAlg R K S K R · ˙ S W 1 W = R W S W 1 W
19 2 lmodring W LMod F Ring
20 6 19 syl W AssAlg F Ring
21 3 5 ringcl F Ring R K S K R · ˙ S K
22 20 21 syl3an1 W AssAlg R K S K R · ˙ S K
23 1 2 3 16 13 asclval R · ˙ S K A R · ˙ S = R · ˙ S W 1 W
24 22 23 syl W AssAlg R K S K A R · ˙ S = R · ˙ S W 1 W
25 1 2 10 6 3 12 asclf W AssAlg A : K Base W
26 25 ffvelrnda W AssAlg S K A S Base W
27 26 3adant2 W AssAlg R K S K A S Base W
28 1 2 3 12 4 16 asclmul1 W AssAlg R K A S Base W A R × ˙ A S = R W A S
29 27 28 syld3an3 W AssAlg R K S K A R × ˙ A S = R W A S
30 1 2 3 16 13 asclval S K A S = S W 1 W
31 30 3ad2ant3 W AssAlg R K S K A S = S W 1 W
32 31 oveq2d W AssAlg R K S K R W A S = R W S W 1 W
33 29 32 eqtrd W AssAlg R K S K A R × ˙ A S = R W S W 1 W
34 18 24 33 3eqtr4d W AssAlg R K S K A R · ˙ S = A R × ˙ A S