Metamath Proof Explorer


Theorem asinbnd

Description: The arcsine function has range within a vertical strip of the complex plane with real part between -upi / 2 and pi / 2 . (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion asinbnd A arcsin A π 2 π 2

Proof

Step Hyp Ref Expression
1 asinval A arcsin A = i log i A + 1 A 2
2 1 fveq2d A arcsin A = i log i A + 1 A 2
3 ax-icn i
4 mulcl i A i A
5 3 4 mpan A i A
6 ax-1cn 1
7 sqcl A A 2
8 subcl 1 A 2 1 A 2
9 6 7 8 sylancr A 1 A 2
10 9 sqrtcld A 1 A 2
11 5 10 addcld A i A + 1 A 2
12 asinlem A i A + 1 A 2 0
13 11 12 logcld A log i A + 1 A 2
14 imre log i A + 1 A 2 log i A + 1 A 2 = i log i A + 1 A 2
15 13 14 syl A log i A + 1 A 2 = i log i A + 1 A 2
16 2 15 eqtr4d A arcsin A = log i A + 1 A 2
17 asinlem3 A 0 i A + 1 A 2
18 argrege0 i A + 1 A 2 i A + 1 A 2 0 0 i A + 1 A 2 log i A + 1 A 2 π 2 π 2
19 11 12 17 18 syl3anc A log i A + 1 A 2 π 2 π 2
20 16 19 eqeltrd A arcsin A π 2 π 2