Metamath Proof Explorer


Theorem asinbnd

Description: The arcsine function has range within a vertical strip of the complex plane with real part between -upi / 2 and pi / 2 . (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion asinbnd AarcsinAπ2π2

Proof

Step Hyp Ref Expression
1 asinval AarcsinA=ilogiA+1A2
2 1 fveq2d AarcsinA=ilogiA+1A2
3 ax-icn i
4 mulcl iAiA
5 3 4 mpan AiA
6 ax-1cn 1
7 sqcl AA2
8 subcl 1A21A2
9 6 7 8 sylancr A1A2
10 9 sqrtcld A1A2
11 5 10 addcld AiA+1A2
12 asinlem AiA+1A20
13 11 12 logcld AlogiA+1A2
14 imre logiA+1A2logiA+1A2=ilogiA+1A2
15 13 14 syl AlogiA+1A2=ilogiA+1A2
16 2 15 eqtr4d AarcsinA=logiA+1A2
17 asinlem3 A0iA+1A2
18 argrege0 iA+1A2iA+1A200iA+1A2logiA+1A2π2π2
19 11 12 17 18 syl3anc AlogiA+1A2π2π2
20 16 19 eqeltrd AarcsinAπ2π2