Metamath Proof Explorer


Theorem asinlem3

Description: The argument to the logarithm in df-asin has nonnegative real part. (Contributed by Mario Carneiro, 1-Apr-2015)

Ref Expression
Assertion asinlem3 A0iA+1A2

Proof

Step Hyp Ref Expression
1 0red A0
2 imcl AA
3 ax-icn i
4 negcl AA
5 4 adantr A0AA
6 mulcl iAiA
7 3 5 6 sylancr A0AiA
8 ax-1cn 1
9 5 sqcld A0AA2
10 subcl 1A21A2
11 8 9 10 sylancr A0A1A2
12 11 sqrtcld A0A1A2
13 7 12 addcld A0AiA+1A2
14 asinlem AiA+1A20
15 5 14 syl A0AiA+1A20
16 13 15 absrpcld A0AiA+1A2+
17 2z 2
18 rpexpcl iA+1A2+2iA+1A22+
19 16 17 18 sylancl A0AiA+1A22+
20 19 rprecred A0A1iA+1A22
21 13 cjcld A0AiA+1A2
22 21 recld A0AiA+1A2
23 19 rpreccld A0A1iA+1A22+
24 23 rpge0d A0A01iA+1A22
25 imneg AA=A
26 25 adantr A0AA=A
27 2 le0neg2d A0AA0
28 27 biimpa A0AA0
29 26 28 eqbrtrd A0AA0
30 asinlem3a AA00iA+1A2
31 5 29 30 syl2anc A0A0iA+1A2
32 13 recjd A0AiA+1A2=iA+1A2
33 31 32 breqtrrd A0A0iA+1A2
34 20 22 24 33 mulge0d A0A01iA+1A22iA+1A2
35 recval iA+1A2iA+1A201iA+1A2=iA+1A2iA+1A22
36 13 15 35 syl2anc A0A1iA+1A2=iA+1A2iA+1A22
37 asinlem2 AiA+1A2iA+1A2=1
38 37 adantr A0AiA+1A2iA+1A2=1
39 38 eqcomd A0A1=iA+1A2iA+1A2
40 1cnd A0A1
41 simpl A0AA
42 mulcl iAiA
43 3 41 42 sylancr A0AiA
44 sqcl AA2
45 44 adantr A0AA2
46 subcl 1A21A2
47 8 45 46 sylancr A0A1A2
48 47 sqrtcld A0A1A2
49 43 48 addcld A0AiA+1A2
50 40 49 13 15 divmul3d A0A1iA+1A2=iA+1A21=iA+1A2iA+1A2
51 39 50 mpbird A0A1iA+1A2=iA+1A2
52 19 rpcnd A0AiA+1A22
53 19 rpne0d A0AiA+1A220
54 21 52 53 divrec2d A0AiA+1A2iA+1A22=1iA+1A22iA+1A2
55 36 51 54 3eqtr3d A0AiA+1A2=1iA+1A22iA+1A2
56 55 fveq2d A0AiA+1A2=1iA+1A22iA+1A2
57 20 21 remul2d A0A1iA+1A22iA+1A2=1iA+1A22iA+1A2
58 56 57 eqtrd A0AiA+1A2=1iA+1A22iA+1A2
59 34 58 breqtrrd A0A0iA+1A2
60 asinlem3a AA00iA+1A2
61 1 2 59 60 lecasei A0iA+1A2