Metamath Proof Explorer


Theorem atanneg

Description: The arctangent function is odd. (Contributed by Mario Carneiro, 3-Apr-2015)

Ref Expression
Assertion atanneg AdomarctanarctanA=arctanA

Proof

Step Hyp Ref Expression
1 ax-icn i
2 atandm2 AdomarctanA1iA01+iA0
3 2 simp1bi AdomarctanA
4 mulneg2 iAiA=iA
5 1 3 4 sylancr AdomarctaniA=iA
6 5 oveq2d Adomarctan1iA=1iA
7 ax-1cn 1
8 mulcl iAiA
9 1 3 8 sylancr AdomarctaniA
10 subneg 1iA1iA=1+iA
11 7 9 10 sylancr Adomarctan1iA=1+iA
12 6 11 eqtrd Adomarctan1iA=1+iA
13 12 fveq2d Adomarctanlog1iA=log1+iA
14 5 oveq2d Adomarctan1+iA=1+iA
15 negsub 1iA1+iA=1iA
16 7 9 15 sylancr Adomarctan1+iA=1iA
17 14 16 eqtrd Adomarctan1+iA=1iA
18 17 fveq2d Adomarctanlog1+iA=log1iA
19 13 18 oveq12d Adomarctanlog1iAlog1+iA=log1+iAlog1iA
20 subcl 1iA1iA
21 7 9 20 sylancr Adomarctan1iA
22 2 simp2bi Adomarctan1iA0
23 21 22 logcld Adomarctanlog1iA
24 addcl 1iA1+iA
25 7 9 24 sylancr Adomarctan1+iA
26 2 simp3bi Adomarctan1+iA0
27 25 26 logcld Adomarctanlog1+iA
28 23 27 negsubdi2d Adomarctanlog1iAlog1+iA=log1+iAlog1iA
29 19 28 eqtr4d Adomarctanlog1iAlog1+iA=log1iAlog1+iA
30 29 oveq2d Adomarctani2log1iAlog1+iA=i2log1iAlog1+iA
31 halfcl ii2
32 1 31 ax-mp i2
33 23 27 subcld Adomarctanlog1iAlog1+iA
34 mulneg2 i2log1iAlog1+iAi2log1iAlog1+iA=i2log1iAlog1+iA
35 32 33 34 sylancr Adomarctani2log1iAlog1+iA=i2log1iAlog1+iA
36 30 35 eqtrd Adomarctani2log1iAlog1+iA=i2log1iAlog1+iA
37 atandmneg AdomarctanAdomarctan
38 atanval AdomarctanarctanA=i2log1iAlog1+iA
39 37 38 syl AdomarctanarctanA=i2log1iAlog1+iA
40 atanval AdomarctanarctanA=i2log1iAlog1+iA
41 40 negeqd AdomarctanarctanA=i2log1iAlog1+iA
42 36 39 41 3eqtr4d AdomarctanarctanA=arctanA