Metamath Proof Explorer


Theorem atcvr0eq

Description: The covers relation is not transitive. ( atcv0eq analog.) (Contributed by NM, 29-Nov-2011)

Ref Expression
Hypotheses atcvr0eq.j ˙=joinK
atcvr0eq.z 0˙=0.K
atcvr0eq.c C=K
atcvr0eq.a A=AtomsK
Assertion atcvr0eq KHLPAQA0˙CP˙QP=Q

Proof

Step Hyp Ref Expression
1 atcvr0eq.j ˙=joinK
2 atcvr0eq.z 0˙=0.K
3 atcvr0eq.c C=K
4 atcvr0eq.a A=AtomsK
5 1 3 4 atcvr1 KHLPAQAPQPCP˙Q
6 2 3 4 atcvr0 KHLPA0˙CP
7 6 3adant3 KHLPAQA0˙CP
8 7 biantrurd KHLPAQAPCP˙Q0˙CPPCP˙Q
9 5 8 bitrd KHLPAQAPQ0˙CPPCP˙Q
10 simp1 KHLPAQAKHL
11 hlop KHLKOP
12 11 3ad2ant1 KHLPAQAKOP
13 eqid BaseK=BaseK
14 13 2 op0cl KOP0˙BaseK
15 12 14 syl KHLPAQA0˙BaseK
16 13 4 atbase PAPBaseK
17 16 3ad2ant2 KHLPAQAPBaseK
18 13 1 4 hlatjcl KHLPAQAP˙QBaseK
19 13 3 cvrntr KHL0˙BaseKPBaseKP˙QBaseK0˙CPPCP˙Q¬0˙CP˙Q
20 10 15 17 18 19 syl13anc KHLPAQA0˙CPPCP˙Q¬0˙CP˙Q
21 9 20 sylbid KHLPAQAPQ¬0˙CP˙Q
22 21 necon4ad KHLPAQA0˙CP˙QP=Q
23 1 4 hlatjidm KHLPAP˙P=P
24 23 3adant3 KHLPAQAP˙P=P
25 7 24 breqtrrd KHLPAQA0˙CP˙P
26 oveq2 P=QP˙P=P˙Q
27 26 breq2d P=Q0˙CP˙P0˙CP˙Q
28 25 27 syl5ibcom KHLPAQAP=Q0˙CP˙Q
29 22 28 impbid KHLPAQA0˙CP˙QP=Q