Metamath Proof Explorer


Theorem atcvreq0

Description: An element covered by an atom must be zero. ( atcveq0 analog.) (Contributed by NM, 4-Nov-2011)

Ref Expression
Hypotheses atcvreq0.b B=BaseK
atcvreq0.l ˙=K
atcvreq0.z 0˙=0.K
atcvreq0.c C=K
atcvreq0.a A=AtomsK
Assertion atcvreq0 KAtLatXBPAXCPX=0˙

Proof

Step Hyp Ref Expression
1 atcvreq0.b B=BaseK
2 atcvreq0.l ˙=K
3 atcvreq0.z 0˙=0.K
4 atcvreq0.c C=K
5 atcvreq0.a A=AtomsK
6 eqid K=K
7 1 6 3 atl0le KAtLatXB0˙KX
8 7 3adant3 KAtLatXBPA0˙KX
9 8 adantr KAtLatXBPAXCP0˙KX
10 1 5 atbase PAPB
11 eqid <K=<K
12 1 11 4 cvrlt KAtLatXBPBXCPX<KP
13 10 12 syl3anl3 KAtLatXBPAXCPX<KP
14 atlpos KAtLatKPoset
15 14 3ad2ant1 KAtLatXBPAKPoset
16 15 adantr KAtLatXBPAXCPKPoset
17 1 3 atl0cl KAtLat0˙B
18 17 3ad2ant1 KAtLatXBPA0˙B
19 18 adantr KAtLatXBPAXCP0˙B
20 10 3ad2ant3 KAtLatXBPAPB
21 20 adantr KAtLatXBPAXCPPB
22 simpl2 KAtLatXBPAXCPXB
23 3 4 5 atcvr0 KAtLatPA0˙CP
24 23 3adant2 KAtLatXBPA0˙CP
25 24 adantr KAtLatXBPAXCP0˙CP
26 1 6 11 4 cvrnbtwn3 KPoset0˙BPBXB0˙CP0˙KXX<KP0˙=X
27 16 19 21 22 25 26 syl131anc KAtLatXBPAXCP0˙KXX<KP0˙=X
28 9 13 27 mpbi2and KAtLatXBPAXCP0˙=X
29 28 eqcomd KAtLatXBPAXCPX=0˙
30 29 ex KAtLatXBPAXCPX=0˙
31 breq1 X=0˙XCP0˙CP
32 24 31 syl5ibrcom KAtLatXBPAX=0˙XCP
33 30 32 impbid KAtLatXBPAXCPX=0˙