Metamath Proof Explorer


Theorem atcvreq0

Description: An element covered by an atom must be zero. ( atcveq0 analog.) (Contributed by NM, 4-Nov-2011)

Ref Expression
Hypotheses atcvreq0.b B = Base K
atcvreq0.l ˙ = K
atcvreq0.z 0 ˙ = 0. K
atcvreq0.c C = K
atcvreq0.a A = Atoms K
Assertion atcvreq0 K AtLat X B P A X C P X = 0 ˙

Proof

Step Hyp Ref Expression
1 atcvreq0.b B = Base K
2 atcvreq0.l ˙ = K
3 atcvreq0.z 0 ˙ = 0. K
4 atcvreq0.c C = K
5 atcvreq0.a A = Atoms K
6 eqid K = K
7 1 6 3 atl0le K AtLat X B 0 ˙ K X
8 7 3adant3 K AtLat X B P A 0 ˙ K X
9 8 adantr K AtLat X B P A X C P 0 ˙ K X
10 1 5 atbase P A P B
11 eqid < K = < K
12 1 11 4 cvrlt K AtLat X B P B X C P X < K P
13 10 12 syl3anl3 K AtLat X B P A X C P X < K P
14 atlpos K AtLat K Poset
15 14 3ad2ant1 K AtLat X B P A K Poset
16 15 adantr K AtLat X B P A X C P K Poset
17 1 3 atl0cl K AtLat 0 ˙ B
18 17 3ad2ant1 K AtLat X B P A 0 ˙ B
19 18 adantr K AtLat X B P A X C P 0 ˙ B
20 10 3ad2ant3 K AtLat X B P A P B
21 20 adantr K AtLat X B P A X C P P B
22 simpl2 K AtLat X B P A X C P X B
23 3 4 5 atcvr0 K AtLat P A 0 ˙ C P
24 23 3adant2 K AtLat X B P A 0 ˙ C P
25 24 adantr K AtLat X B P A X C P 0 ˙ C P
26 1 6 11 4 cvrnbtwn3 K Poset 0 ˙ B P B X B 0 ˙ C P 0 ˙ K X X < K P 0 ˙ = X
27 16 19 21 22 25 26 syl131anc K AtLat X B P A X C P 0 ˙ K X X < K P 0 ˙ = X
28 9 13 27 mpbi2and K AtLat X B P A X C P 0 ˙ = X
29 28 eqcomd K AtLat X B P A X C P X = 0 ˙
30 29 ex K AtLat X B P A X C P X = 0 ˙
31 breq1 X = 0 ˙ X C P 0 ˙ C P
32 24 31 syl5ibrcom K AtLat X B P A X = 0 ˙ X C P
33 30 32 impbid K AtLat X B P A X C P X = 0 ˙