Metamath Proof Explorer


Theorem atlelt

Description: Transfer less-than relation from one atom to another. (Contributed by NM, 7-May-2012)

Ref Expression
Hypotheses atlelt.b B=BaseK
atlelt.l ˙=K
atlelt.s <˙=<K
atlelt.a A=AtomsK
Assertion atlelt KHLPAQAXBP˙XQ<˙XP<˙X

Proof

Step Hyp Ref Expression
1 atlelt.b B=BaseK
2 atlelt.l ˙=K
3 atlelt.s <˙=<K
4 atlelt.a A=AtomsK
5 simp3r KHLPAQAXBP˙XQ<˙XQ<˙X
6 breq1 P=QP<˙XQ<˙X
7 5 6 syl5ibrcom KHLPAQAXBP˙XQ<˙XP=QP<˙X
8 simp1 KHLPAQAXBP˙XQ<˙XKHL
9 simp21 KHLPAQAXBP˙XQ<˙XPA
10 simp22 KHLPAQAXBP˙XQ<˙XQA
11 eqid joinK=joinK
12 3 11 4 atlt KHLPAQAP<˙PjoinKQPQ
13 8 9 10 12 syl3anc KHLPAQAXBP˙XQ<˙XP<˙PjoinKQPQ
14 simp3l KHLPAQAXBP˙XQ<˙XP˙X
15 simp23 KHLPAQAXBP˙XQ<˙XXB
16 8 10 15 3jca KHLPAQAXBP˙XQ<˙XKHLQAXB
17 2 3 pltle KHLQAXBQ<˙XQ˙X
18 16 5 17 sylc KHLPAQAXBP˙XQ<˙XQ˙X
19 hllat KHLKLat
20 19 3ad2ant1 KHLPAQAXBP˙XQ<˙XKLat
21 1 4 atbase PAPB
22 9 21 syl KHLPAQAXBP˙XQ<˙XPB
23 1 4 atbase QAQB
24 10 23 syl KHLPAQAXBP˙XQ<˙XQB
25 1 2 11 latjle12 KLatPBQBXBP˙XQ˙XPjoinKQ˙X
26 20 22 24 15 25 syl13anc KHLPAQAXBP˙XQ<˙XP˙XQ˙XPjoinKQ˙X
27 14 18 26 mpbi2and KHLPAQAXBP˙XQ<˙XPjoinKQ˙X
28 hlpos KHLKPoset
29 28 3ad2ant1 KHLPAQAXBP˙XQ<˙XKPoset
30 1 11 latjcl KLatPBQBPjoinKQB
31 20 22 24 30 syl3anc KHLPAQAXBP˙XQ<˙XPjoinKQB
32 1 2 3 pltletr KPosetPBPjoinKQBXBP<˙PjoinKQPjoinKQ˙XP<˙X
33 29 22 31 15 32 syl13anc KHLPAQAXBP˙XQ<˙XP<˙PjoinKQPjoinKQ˙XP<˙X
34 27 33 mpan2d KHLPAQAXBP˙XQ<˙XP<˙PjoinKQP<˙X
35 13 34 sylbird KHLPAQAXBP˙XQ<˙XPQP<˙X
36 7 35 pm2.61dne KHLPAQAXBP˙XQ<˙XP<˙X