Metamath Proof Explorer


Theorem atltcvr

Description: An equivalence of less-than ordering and covers relation. (Contributed by NM, 7-Feb-2012)

Ref Expression
Hypotheses atltcvr.s <˙=<K
atltcvr.j ˙=joinK
atltcvr.a A=AtomsK
atltcvr.c C=K
Assertion atltcvr KHLPAQARAP<˙Q˙RPCQ˙R

Proof

Step Hyp Ref Expression
1 atltcvr.s <˙=<K
2 atltcvr.j ˙=joinK
3 atltcvr.a A=AtomsK
4 atltcvr.c C=K
5 oveq1 Q=RQ˙R=R˙R
6 simpr3 KHLPAQARARA
7 2 3 hlatjidm KHLRAR˙R=R
8 6 7 syldan KHLPAQARAR˙R=R
9 5 8 sylan9eqr KHLPAQARAQ=RQ˙R=R
10 9 breq2d KHLPAQARAQ=RP<˙Q˙RP<˙R
11 hlatl KHLKAtLat
12 11 adantr KHLPAQARAKAtLat
13 simpr1 KHLPAQARAPA
14 1 3 atnlt KAtLatPARA¬P<˙R
15 12 13 6 14 syl3anc KHLPAQARA¬P<˙R
16 15 pm2.21d KHLPAQARAP<˙RPCQ˙R
17 16 adantr KHLPAQARAQ=RP<˙RPCQ˙R
18 10 17 sylbid KHLPAQARAQ=RP<˙Q˙RPCQ˙R
19 simpl KHLPAQARAKHL
20 hllat KHLKLat
21 20 adantr KHLPAQARAKLat
22 simpr2 KHLPAQARAQA
23 eqid BaseK=BaseK
24 23 3 atbase QAQBaseK
25 22 24 syl KHLPAQARAQBaseK
26 23 3 atbase RARBaseK
27 6 26 syl KHLPAQARARBaseK
28 23 2 latjcl KLatQBaseKRBaseKQ˙RBaseK
29 21 25 27 28 syl3anc KHLPAQARAQ˙RBaseK
30 eqid K=K
31 30 1 pltle KHLPAQ˙RBaseKP<˙Q˙RPKQ˙R
32 19 13 29 31 syl3anc KHLPAQARAP<˙Q˙RPKQ˙R
33 32 adantr KHLPAQARAQRP<˙Q˙RPKQ˙R
34 simpll KHLPAQARAQRPKQ˙RKHL
35 simplr KHLPAQARAQRPKQ˙RPAQARA
36 simpr KHLPAQARAQRPKQ˙RQRPKQ˙R
37 34 35 36 3jca KHLPAQARAQRPKQ˙RKHLPAQARAQRPKQ˙R
38 37 anassrs KHLPAQARAQRPKQ˙RKHLPAQARAQRPKQ˙R
39 30 2 4 3 atcvrj2 KHLPAQARAQRPKQ˙RPCQ˙R
40 38 39 syl KHLPAQARAQRPKQ˙RPCQ˙R
41 40 ex KHLPAQARAQRPKQ˙RPCQ˙R
42 33 41 syld KHLPAQARAQRP<˙Q˙RPCQ˙R
43 18 42 pm2.61dane KHLPAQARAP<˙Q˙RPCQ˙R
44 23 3 atbase PAPBaseK
45 13 44 syl KHLPAQARAPBaseK
46 23 1 4 cvrlt KHLPBaseKQ˙RBaseKPCQ˙RP<˙Q˙R
47 46 ex KHLPBaseKQ˙RBaseKPCQ˙RP<˙Q˙R
48 19 45 29 47 syl3anc KHLPAQARAPCQ˙RP<˙Q˙R
49 43 48 impbid KHLPAQARAP<˙Q˙RPCQ˙R