Metamath Proof Explorer


Theorem axcontlem3

Description: Lemma for axcont . Given the separation assumption, B is a subset of D . (Contributed by Scott Fenton, 18-Jun-2013)

Ref Expression
Hypothesis axcontlem3.1 D = p 𝔼 N | U Btwn Z p p Btwn Z U
Assertion axcontlem3 N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A Z U B D

Proof

Step Hyp Ref Expression
1 axcontlem3.1 D = p 𝔼 N | U Btwn Z p p Btwn Z U
2 simplr2 N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A Z U B 𝔼 N
3 simpr2 N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A Z U U A
4 3 anim1i N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A Z U p B U A p B
5 simplr3 N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A Z U x A y B x Btwn Z y
6 5 adantr N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A Z U p B x A y B x Btwn Z y
7 breq1 x = U x Btwn Z y U Btwn Z y
8 opeq2 y = p Z y = Z p
9 8 breq2d y = p U Btwn Z y U Btwn Z p
10 7 9 rspc2v U A p B x A y B x Btwn Z y U Btwn Z p
11 4 6 10 sylc N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A Z U p B U Btwn Z p
12 11 orcd N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A Z U p B U Btwn Z p p Btwn Z U
13 12 ralrimiva N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A Z U p B U Btwn Z p p Btwn Z U
14 1 sseq2i B D B p 𝔼 N | U Btwn Z p p Btwn Z U
15 ssrab B p 𝔼 N | U Btwn Z p p Btwn Z U B 𝔼 N p B U Btwn Z p p Btwn Z U
16 14 15 bitri B D B 𝔼 N p B U Btwn Z p p Btwn Z U
17 2 13 16 sylanbrc N A 𝔼 N B 𝔼 N x A y B x Btwn Z y Z 𝔼 N U A Z U B D