Metamath Proof Explorer


Theorem axlowdimlem12

Description: Lemma for axlowdim . Calculate the value of Q away from its distinguished point. (Contributed by Scott Fenton, 21-Apr-2013)

Ref Expression
Hypothesis axlowdimlem10.1 Q=I+111NI+1×0
Assertion axlowdimlem12 K1NKI+1QK=0

Proof

Step Hyp Ref Expression
1 axlowdimlem10.1 Q=I+111NI+1×0
2 1 fveq1i QK=I+111NI+1×0K
3 eldifsn K1NI+1K1NKI+1
4 disjdif I+11NI+1=
5 ovex I+1V
6 1ex 1V
7 5 6 fnsn I+11FnI+1
8 c0ex 0V
9 8 fconst 1NI+1×0:1NI+10
10 ffn 1NI+1×0:1NI+101NI+1×0Fn1NI+1
11 9 10 ax-mp 1NI+1×0Fn1NI+1
12 fvun2 I+11FnI+11NI+1×0Fn1NI+1I+11NI+1=K1NI+1I+111NI+1×0K=1NI+1×0K
13 7 11 12 mp3an12 I+11NI+1=K1NI+1I+111NI+1×0K=1NI+1×0K
14 4 13 mpan K1NI+1I+111NI+1×0K=1NI+1×0K
15 8 fvconst2 K1NI+11NI+1×0K=0
16 14 15 eqtrd K1NI+1I+111NI+1×0K=0
17 3 16 sylbir K1NKI+1I+111NI+1×0K=0
18 2 17 eqtrid K1NKI+1QK=0